
Learning to Rank Query Reformulations

Van Dang, Michael Bendersky and W. Bruce Croft
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
{vdang, bemike, croft}@cs.umass.edu

ABSTRACT
Query reformulation techniques based on query logs have re-
cently proven to be effective for web queries. However, when
initial queries have reasonably good quality, these techniques
are often not reliable enough to identify the helpful reformu-
lations among the suggested queries. In this paper, we show
that we can use as few as two features to rerank a list of re-
formulated queries, or expanded queries to be specific, gen-
erated by a log-based query reformulation technique. Our
results across five TREC collections suggest that there are
consistently more useful reformulations in the first two posi-
tions in the new ranked list than there were initially, which
leads to statistically significant improvements in retrieval ef-
fectiveness.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Query reformulation, query expansion, query log, query per-
formance predictor, learning to rank.

1. INTRODUCTION
Query logs have become an important resource for many

tasks including query reformulation [3, 6]. Most log-based
reformulation techniques, however, are evaluated using non-
standard approaches and proprietary query logs, making it
hard to compare one to another. A more recent study [2]
compares different techniques using TREC collections and
finds that when intial queries have relatively high quality,
query expansion is much more reliable than substitution.
Although the log-based expansion technique [2] can gener-

ate some good reformulations for high-quality TREC queries,
it also produces many bad reformulations and it does not
generate a reliable ranking of the reformulations by quality.
In this paper, we show that we can effectively rerank the

list of reformulated queries obtained with this log-based ex-
pansion approach. By using as few as two features, SCQ

Copyright is held by the author/owner(s).
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
ACM 978-1-60558-896-4/10/07.

(Similarity Collection Query) [8] and query clarity [1], we
can substantially improve the ranking of reformulated queries
in terms of the quality of the reformulations in the top two
ranks (measured by NDCG@2 ), which then leads to signifi-
cant improvements in retrieval effectiveness.

2. METHOD

2.1 Log-based Query Expansion
The log-based query expansion method [2] (referred to

as LQE) is a slight modification of the query substitution
method proposed by Wang and Zhai [6]. It first estimates
a context distribution for terms occuring in a query log. It
then constructs a translation model that can suggest similar
words based on their distributional similarity. Given any
query, the expansion model will try to expand it with can-
didates suggested by the translation model for each query
term. The model decides whether to expand the query based
on how similar the candidate is to the query term and how
appropriate it is to the context of the query. For more de-
tails, see [2].

2.2 The Reranking Approach
Query quality predictors aim to predict a query’s quality

without explicit relevance judgements. Thus, given a ranked
list of reformulated queries, it is intuitive to think about
reorganizing this list based on the “quality” score given by
some predictor.

We tried some of the top-performing predictors that Ku-
maran and Carvalho [4] used in a similar task and found that
SCQ [8] and clarity score [1] are the most effective for our
problem. Therefore, we rerank the list of expanded queries
by

score(q) = �1 × SCQ(q) + �2 × clarity(q)

where �1 and �2 are weight of the two predictors.

Table 1: Statistics of queries used for reformulation
AP WSJ Robust-04 WT10G Gov-2

Title Q. 133 133 200 66 119
Desc. Q. 150 150 246 94 134



Table 3: Evaluation of retrieval effectiveness in terms of MAP. ∗ and † indicate significant difference to the
original query and LQE’s ranked list respectively. Best result in each column is marked in bold.

Title Query Description Query
AP WSJ RBT-04 WT10G Gov-2 AP WSJ RBT-04 WT10G Gov-2

Orig-Q 0.1694 0.2594 0.2247 0.1904 0.2829 0.1660 0.2358 0.2519 0.1770 0.2518

LQE 0.1741 0.2563 0.2297 0.1911 0.2559∗ 0.1694∗ 0.2391 0.2538 0.1775 0.2497

Rerank 0.1749
∗

0.2663
∗†

0.2382
∗†

0.1962
∗

0.2901
∗†

0.1820
∗† 0.2374 0.2584

∗†
0.1836

∗
0.2579

∗†

Table 2: Our approach (“Rerank”) consistently out-
performs LQE in NDCG@2. All differences are signif-
icant at p < 0.05

Collection Title Query Desc. Query
LQE Rerank LQE Rerank

AP 0.2434 0.4805 0.2307 0.3728

WSJ 0.2318 0.5040 0.2250 0.3296

Robust-04 0.2905 0.5559 0.2138 0.3687

WT10G 0.2673 0.5499 0.1680 0.3847

Gov-2 0.1933 0.5830 0.2059 0.4093

3. EVALUATION

3.1 Experiment Settings
In this section, we evaluate the performance of our rerank-

ing technique. Evaluation is done on five TREC collections:
AP, WSJ, Robust-04, WT10G and Gov-2, with both title

and description queries. We use the language modeling
framework and remove all stop words at indexing time. We
adopt the parameter settings for LQE from the authors [2].
Due to the limited coverage of the available query log [5],

we use only a subset of TREC queries where the LQE can
generate at least one reformulation. Information about these
subsets is given in Table 1.
On each collection, we first use LQE to generate a list of

K expanded queries (K = 30) for each original query. We
append to this list the original query - in the case when all
generated reformulations are bad, the reranking approach
has a chance to choose not to reformulate. We then use our
approach to rerank this list and compare its performance
with that of the intial list as well as original query.

3.2 Training Data
We run LQE with the MSN log to obtain a list of refor-

mulations for each original query. We use all these queries
to do retrieval and record their MAP and use them to cre-
ate our dataset. Training and testing are done using 5-fold
cross validation on this dataset. �1 and �2 are learned us-
ing AdaRank [7] to maximize the average NDCG@2. The
algorithm ends up choosing either (�1 = 1, �2 = 0) or
(�1 = 0, �2 = 1) depending on the collection.

3.3 Reranking Effectiveness
We use NDCG@2 to measure the quality of the ranked

list of reformulations given by our approach. Reformulations
are graded on a scale from zero to four with respect to the
improvement m they provide over the original query. In
particular, improvement larger than 0.03 corresponds to a
4, or (m > 0.03) → 4. Similarly, (0.01 < m ≤ 0.03) → 3,
(0 < m ≤ 0.01) → 2, (m = 0) → 1 and (m < 0) → 0.
Table 2 summarizes the result: the list of reformulations

ranked by our approach has a much higher average NDCG@2

than the initial list. All improvements are statistically sig-
nificant at p < 0.05 using a two-tailed t-test.

3.4 Retrieval Effectiveness
We define the MAP of a ranked list of reformulations as

the best MAP observed among its top two queries. In this
section, we compare the MAP obtained by (i) the original
query, (ii) the list of reformulations generated by LQE, and
(iii) the list reranked by our method.

As can be seen in Table 3, the best of the top two refor-
mulated queries ranked by our approach is almost always
significantly better than the original query. This is not the
case in LQE. In many cases, our method also provides signif-
icant improvements over LQE. This result suggests that the
reranking can push better reformulations to the first two
positions in the ranked list.

4. CONCLUSIONS
In this paper, we have shown that by reranking the list of

reformulations generated by the log-based query expansion
technique [2] with only two features, we can push more good
reformulations into the first two positions in the list. This is
reflected in the huge gain of NDCG@2 and statistically sig-
nificant improvement in retrieval effectiveness. In the future,
we will investigate more features. We hope this will lead to
greater improvement in NDCG@1, helping retrieval systems
to reformulate queries implicitly without user involvement.

5. ACKNOWLEDGMENTS
This work was supported in part by the Center for In-

telligent Information Retrieval, in part by NSF grant #IIS-
0711348, and in part by ARRA NSF IIS-9014442. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are the authors’ and do not necessarily re-
flect those of the sponsor.

6. REFERENCES
[1] S. Cronen-Townsend, Y. Zhou, and W.B. Croft. Predicting

Query Performance. In Proc. of SIGIR, pages 299-306, 2002.

[2] V. Dang and W.B. Croft. Query Reformulation Using Anchor
Text. In Proc. of WSDM, pages 41-50, 2010.

[3] R. Jones, B. Rey and O. Madani. Generating Query
Substitutions. In Proc. of WWW, pages 387-396, 2006.

[4] G. Kumaran and V.R. Carvalho. Reducing Long Queries Using
Query Quality Predictors. In Proc. of SIGIR, pages 564-571,
2009.

[5] Proc. of the 2009 workshop on Web Search Click Data,
Barcelona, Spain. ACM New York, NY, USA, 2009.

[6] X. Wang and C. Zhai. Mining Term Association Patterns from
Search Logs for Effective Query Reformulation. In Proc. of

CIKM, pages 479-488, 2008.

[7] J. Xu and H. Li. AdaRank: A Boosting Algorithm for
Information Retrieval. In Proc. of SIGIR, pages 391-398, 2007.

[8] Y. Zhao, F. Scholer, and Y. Tsegay. Effective Pre-retrieval
Query Performance Prediction Using Similarity and Variability
Evidence. In Proc. of ECIR, pages 52-64, 2008.


