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ABSTRACT
Web search combines information obtained at query time with prior
knowledge to form a posterior. This paper focuses on the prior,
which we believe is interesting, given the poverty of the query stim-
ulus (many of the web queries are no more than a word or two).

We propose a learning framework based on the Noisy Channel
Model for combining prior evidence from multiple sources includ-
ing both the authors’ perspectives (e.g., PageRank - the principal
eigenvector of the web graph) as well as the readers’ perspectives
(e.g., click logs and toolbar activity). The framework is general
enough that it can be applied to both documents and queries, both
of which have strong priors.

We show that even features that appear to depend on the combi-
nation of queries and documents and are often used for learning a
ranking function (such as relevance judgments or retrieval scores)
can be included in the prior model using multiple mechanisms of
aggregation (e.g., moments or entropy). More is more. The prior
model improves with both more features and more aggregates.

We conduct an empirical evaluation of the proposed framework,
demonstrating its benefits over a diverse set of learning tasks in-
cluding: (1) query difficulty estimation, (2) click types prediction
and (3) document ranking.

1. INTRODUCTION
Web search combines information obtained at query time with

prior knowledge to form a posterior. In a standard ad hoc doc-
ument retrieval setting [26], a uniform distribution over both the
documents in the collection and the possible user queries is usually
assumed for convenience. However, in the context of web search,
the priors are highly non-uniform in important ways.

In fact, given the poverty of the stimulus (many web search queries
are just a word or two long), there are not enough bits in the query
to address all the web pages, if document prior had a uniform distri-
bution. According to Mei and Church [27], queries have about 22
bits of entropy, and can only address 222 ≈ 4M pages, if all pages
are equally likely. However, some pages are much more likely than
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others to be the answer to the next question. Modern search en-
gines are able to search over tens of billions of pages1 , even though
the queries are too short to address such a large address space, and
they depend on the prior to make up for this difference. This fact
is confirmed by the wide adoption of PageRank [4] and other doc-
ument priors [19, 11, 25] in web search. PageRank’s success led
to the investigation of other types of document priors, based, for
instance, on document centrality in a link graph [19, 11], document
popularity [25] or both [30].

A distribution of user needs in web search is also far from being
uniform. Queries vary significantly by difficulty and intent. The
observed user behavior in response to the query, however, is very
scarce. In most cases, user performs only one or two clicks on the
first page of results, if at all, making it hard to distinguish between
easy and hard queries and queries with different intents.

Accordingly, to improve the retrieval performance and evalua-
tion, and to better model the user experience in the context of web
search, an accurate and robust estimate of prior knowledge about
both the documents and the queries is important. Thus far, how-
ever, this prior knowledge was studied in separate contexts, e.g.
applied to document ranking [32, 3, 11, 20, 28], or to query per-
formance prediction [12, 8, 23]. Our aim is to bring together these
research threads in the context of web search.

We consider multiple features (e.g., clicks, statics ranks, toolbar
counts and retrieval scores) that are often available in the context
of web search, as well as multiple aggregates (e.g., moments or en-
tropy) and find that performance improves with both (over a range
of different tasks).

More is more. More aggregates are better than fewer aggregates,
and more features are better than fewer. Some pieces of this pattern
are more obvious than others. It is not surprising that performance
improves with more features. Learning systems in general and,
specifically, learning-to-rank systems are quite effective in taking
advantage of multiple features [24]. In this paper we demonstrate
that similar mechanisms can be used to take advantage of multiple
aggregates for learning better priors, an approach which is not used
as much in practice, to the best of our knowledge.

This feature aggregation approach allows us to develop a learn-
ing framework for estimating prior knowledge about either a given
document or a given query. We base our framework on a well
known noisy channel model, and empirically explore its utility for
web search. Our framework is general enough to accommodate
prior evidence from multiple sources including both the authors’
perspectives (e.g., PageRank) as well as the readers’ perspectives
(e.g., click logs and toolbar activity). It is often assumed that we
cannot use pairwise features (features that depend on both queries

1For instance, the homepage of the web search engine Cuil
(http://www.cuil.com/) states that it indexes almost 125 billion pages.



and documents) in a prior. The feature aggregation approach makes
it clear how to take advantage of such features for estimating a bet-
ter prior.

The flexibility of our framework allows us to develop several
novel practical models. In addition to being novel contributions
by themselves, these models confirm the validity of our general
framework and our more is more approach for prior prediction over
a wide range of different tasks.

First, in Section 3.2 we propose a model for query difficulty
prediction, which generalizes and improves over the previous ap-
proaches. Second, in Section 3.3 we develop a novel technique for
estimating query malleability and commercial intent which aug-
ments click data with non-click features. Finally, in Section 4.2
we show that click aggregates can be used as priors (rather than
posteriors, as is usually done with clicks [17]) for learning a better
ranking function.

There is some controversy over clicks among our colleagues.
Some people love them, and some don’t. We find merit with both
positions. The combination of clicks with other (non-click) features
such as PageRank or retrieval scores is better than either feature by
itself, but if one had to choose a single feature, clicks may not be
the single best choice for all cases.

The best combination of features/aggregates in Section 3.2 shows
performance that is perhaps as good as that of the human judges.
Clicks are often useful when we have them, but we don’t always
have them (especially for rare queries in the “long tail”). It is help-
ful to fall back on other features (as we show in Section 3.3), as
well as to aggregate over other queries (as we show in Section 4.2).

The remainder of the paper is organized as follows. The prior
estimation framework and the data sources are detailed in Section
2. Sections 3 and 4 discuss and evaluate the applications of query
and document priors, respectively. Section 5 outlines the related
work. Finally, the conclusions are discussed in Section 6.

2. PRIOR ESTIMATION FRAMEWORK

2.1 Motivation: The Noisy Channel Model
Shannon’s noisy channel model has been applied to a wide range

of natural language processing tasks, following success in speech
recognition [16]. It decodes the most likely unobserved input Î

from an observed output O

Î = argmax
I

p(I|O) = argmax
I

p(O|I)p(I). (1)

The noisy channel makes an explicit distinction between the chan-
nel model, p(O|I), and the prior (or language model), p(I). This
distinction led to a sizeable literature on language modeling [31],
with the promise that advances in language modeling can be gen-
eralized across a wide range of applications. Language modeling
makes a difference when p(I) is far from uniform. Language mod-
eling is particularly important for long tailed distributions, which
are common in web search. Some applications would not be pos-
sible without language modeling, such as applications with a lot of
noise, underspecified inputs or relatively weak channel constraints.

Web search, for instance, would not be possible if all documents
were equally likely. In web search a “perfect” relevant document
can be viewed as an unobserved input, and a user query as an
observed noisy output. Documents in the collection can then be
ranked by their probability of “generating” the user query [29].

The document prior, p(I), is very informative, since the ob-
served short keyword query (often, just one or two words) does
not have enough bits to address the entire document space (tens of
billions of pages). Web search works by taking advantage of the

Figure 1: Feature/aggregate matrix.
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Figure 2: Graphical model of prior estimation.

strong priors. Some documents are much more likely than other
documents.

Another example is a query performance prediction task, a well
known problem in IR [12]. Here, the search engine attempts to
automatically predict the quality of the ranked list of documents
retrieved in response to a query. The input I is the actual retrieval
performance of a query (as measured by some precision/recall met-
ric). I is not directly observed, since the search engine does not
have an a priori knowledge of the relevant documents for each pos-
sible query. Instead, the user clicks on the documents in the ranked
list are the observed noisy output O. Since the observed click data
is often sparse, a strong query difficulty prior, p(I), is vital in order
to reliably evaluate query performance.

Given the importance of priors in web search, how can they be
estimated? In the next section we present a novel feature aggrega-
tion method to estimate priors by bootstrapping an existing large
scale data repositories often used for learning ranking functions.

2.2 Feature Aggregation
Assume we are given a joint distribution p(q, u) over queries and

documents. Both query and document priors can be estimated from
this joint distribution. Given a query q and a collection of docu-
ments U , we can express the query prior as p(q) =

P

u∈U
p(q, u).

Conversely, given a document u and a collection of queries Q, we
can express the document prior as p(u) =

P

q∈Q
p(q, u).

In this work we consider two data sources for estimating p(q, u) .
The first source stems from a large body of recent work on “Learn-
ing To Rank” [24] techniques. This work led to the development of
pairwise features that take into account both the document and the
query. The second source is a search log that holds records of click
pairs (q,u), where q is the issued query and u is some document
clicked in response to q. Instead of using these pairwise features
directly, as is usually done (e.g., to learn a ranking function), we
use their aggregates to learn either a query or a document prior.

For instance, the marginalization process presented above can
be viewed as applying a summation aggregate to the pairwise fea-
tures. However, resorting to a single aggregate function might limit
the quality of the resulting features. A well known tfidf weight-
ing scheme in IR is a good example of how a combination of two
aggregates performs better than either of them on its own.



Source Features Label
Rqu

- Query-Based #terms(q)
- Link-Based PageRank(u), PageRank(D)
- Toolbar-Based #visits (u), #visits (D), lqu

#uniq_users (u), #uniq_users (D)
- Text-Based BM25F(q,u), tf_title(q,u)

tf_URL (q,u), tf_URL (q,D)
Lqu #clicks(q,u), click_pos(q,u) tqu

Table 1: Summary of data in feature repository Rqu and click repos-
itory Lqu. Features are categorized by type, and are based either on
the query-document pair (q,u), query (q), document (u), or document
web-domain (D).

Church and Gale [9] show that introducing an additional aggre-
gate, burstiness, helps to even better distinguish content-bearing
words in the collection. Following this line of thought, we choose
to work in a discriminative machine learning framework, and cast
different feature aggregates as different features, letting a super-
vised model to decide on the importance of each feature.

Fig. 1 illustrates the feature aggregation process. Each cell in
the matrix at Fig. 1 is a single feature in the feature aggregate
vector. Note that in this fashion, we can potentially improve the
performance of our model by either adding new features or new
feature aggregates. As the experimental results in Sections 3 and 4
demonstrate, more is more: both new features and new aggregates
consistently help to improve the prior estimation.

Fig. 2 depicts a graphical model of our priors. Given a set of
|Q| ∗ |U| observed pairwise features (a), we can either derive a set
of |Q| query priors (b), or a set of |U| document priors (c). Feature
aggregate vector (Fig. 1) can then serve as an input to a regression
model for learning the priors, an approach we adopt in this paper.

Note that although the graphical models in Fig. 2(b),(c) are fairly
straightforward, they can be extended to more complex models,
e.g., by considering inter-query or inter-document relations. In this
case, instead of linear/multinomial regression-based models em-
ployed in this work, relational learning methods such as CRF [21]
can be used for estimating priors. We leave the exploration of these
methods to future work.

Theoretically, all the possible query-document pairs need to be
considered for the correct computation of the prior. In practice, for
most such pairs the joint probability p(q, u) is negligible, allowing
us to consider only a subset of related query-document pairs. We
assume that pairs can be related either through clicks, retrieval pro-
cess or explicit human judgments. In the following section we pro-
vide more details on the construction of our principal data sources
for determining these pairs.

2.3 Data Sources
Two main data sources are used throughout this paper: a feature

repository obtained from a large web corpus and a click repository
obtained from a query log of a commercial search engine. Table 1
presents a summary of these two sources. In what follows, we give
details on the process of obtaining and analyzing the data.

2.3.1 Feature Repository
We use a large-scale feature repository, containing pairwise query-

document features, of the form typically used for training “Learn-
ing to Rank” [24] algorithms. Formally, such a repository, denoted
Rqu is a set of 4-tuples {(q, u, fR

qu, lqu)}. Each tuple is uniquely
identified by a query string q and a URL2 u pair. Rqu contains ap-
2We use the terms "document" and "URL" interchangeably in this paper,

Gu∈u(fqu)
LOG_SUM log(

P

u∈u fqu + 1)
LOG_COUNT log(|u| + 1)
MEDIAN medianu∈ufqu

MAX maxu∈u fqu

ENTROPY −
P

u∈u

fqu
P

u∈u
fqu

log
fqu

P

u∈u
fqu

Table 2: List of aggregate functions for query priors.

proximately 4 million such tuples for 31,962 unique queries. fR

qu

is a feature vector for (q,u) pair, and lqu is a human rating for the
relevance of document u w.r.t. q. In our experiments, fR

qu contains
11 features describing textual query-document match, document
quality and popularity. lqu ∈ [1, 5] is an ordinal value, where the
range corresponds to the relevance ratings [1-Perfect, 2-Excellent,
3-Good, 4-Fair, 5-Bad].

2.3.2 Click Repository
In addition to the feature repository, we use a click repository,

denoted Lqu. Lqu is a summary of the portion of the query log
from a commercial web search engine, containing click information
about queries and documents represented in Rqu for the period of
February-May, 2008. Lqu is based on approximately 11 million
clicks.

Similarly to the feature repository Rqu, click repository Lqu con-
sists of the four-tuples of the form {(q, u, f L

qu, tqu)}, which are
uniquely identified by a (q,u) pair. fL

qu holds information about the
number of clicks and the click position for (q,u). tqu ∈ {alg, ad, sug}
is a click type for the clicks on the pair (q,u). alg is a click on an
algorithmic search result, ad is a click on a contextual ad and sug

is a click on query suggestion.
Since both the feature repository and the click repository con-

tain data for query-document pairs, we use the concatenation of the
two feature vectors fR

qu and fL

qu as the complete feature vector fqu,
containing information from both sources.

3. QUERY PRIORS

3.1 Query Prior Definition
The pairwise features described in Section 2.3 are convenient

for certain purposes, e.g., learning the correct rankings of docu-
ments in response to a query [24]. However, they are less suit-
able for estimating a query prior. Instead, we are interested in a
query-dependent feature repository Rq consisting of set of tuples
{(q, fq)}.

For this purpose, we use the marginalization property discussed
in Section 2.2 to leverage, by aggregation, the available pairwise
features. Accordingly, each query q is represented in Rq by a fea-
ture vector fq of size |a| ∗ |fqu|

q , where |a| is the number of ag-
gregates used in the model, and |fqu|

q is the number of available
pairwise features for q. Each feature fq ∈ fq is of the form

fq = Gu∈u(fqu), (2)

where u represents the set of documents for which pairwise fea-
tures with query q are available, and Gu∈u(·) is an aggregate func-
tion over u.

Table 2 presents 5 aggregate functions that were used through-
out our experiments3. Note that aggregate functions can be com-
assuming that a document is a web page represented by a single unique
URL.
3We experimented with additional aggregate functions such as standard
deviation, however including these aggregates did not improve the perfor-



Rating lqu lq
1-Perfect 20,579 7,161
2-Excellent 57,204 9,486
3-Good 423,540 9,346
4-Fair 1,157,281 3,695
5-Bad 2,198,598 2,274

Table 3: Distribution of pairwise query-document (lqu) ratings and
query difficulty (lq ) ratings.

bined. For instance, log of the mean aggregate can be expressed as
LOG_MEAN = LOG_SUM − LOG_COUNT.

The remainder of this section presents two applications of ag-
gregate features for estimating query priors. Section 3.2 describes
their use for query difficulty prediction. Section 3.3 describes their
use for predicting click types.

3.2 Query Difficulty Prediction
Query performance prediction is an active research topic in tradi-

tional IR [8, 12, 13, 15]. Accurate prediction of query performance
is, clearly, an important task for web search engines as well. For
example, if the search engine estimates with high probability that
a query has a single perfect answer, the user experience can be im-
proved by directly serving the relevant page, rather than displaying
the entire result list4 [1]. On the other extreme of the query perfor-
mance spectrum, if the search engine estimates with high probabil-
ity that a query will not retrieve relevant pages, query-suggestion
mechanisms can be activated to propose alternative queries, for
which the search engine has better answers [34].

In this paper, we cast the task of query performance prediction as
an estimation of a query difficulty prior. Since we view the query
difficulty as an inherent property of the query itself, and do not
base it on the ranking performance of a particular search engine,
as is usually done in previous work (e.g., [12]), we define it as an
upper bound on the retrieval performance given the query.

Formally, letting lqu be a human rating assigned to a particular
query-document pair, we define the estimated query difficulty by

lq = min
u∈u

lqu,

where u represents the set of documents for which human ratings
w.r.t. query q are available. Higher lq indicates more difficult query.
In other words, queries that have at least one “Perfect” rating w.r.t.
some document are the easiest, while those that have only “Bad”
ratings are the hardest.

Table 3 shows the distribution of pairwise ratings (lqu) and query
difficulty ratings (lq). Learning the pairwise ratings lqu is the fo-
cus of the ongoing work on learning to rank, and, although there is
much recent progress in the field, it still remains a hard problem.
One of the confounding factors in the process of learning the cor-
rect pairwise ratings lqu, is the fact that lqu is dominated by low
ratings (most of the documents in the collection are not a good an-
swer for any given query).

The distribution of query difficulty rating lq is, on the other hand,
much more balanced, and (as we show in this section) can be easier
to estimate. 52% of the queries have at least one document with
Perfect or Excellent rating, and so more than half of the queries
have at least one good answer.

However, while being a simpler learning problem than ranking
all the documents w.r.t. the query, predicting an upper bound on
query performance is still an important task. Reliable discovery of

mance in our initial experiments.
4Case in point, Google’s “I’m Feeling Lucky" feature.

an upper bound on query performance can allow web search en-
gines to automatically detect navigational [5] queries (queries that
have a single “Perfect” answer), which constitute a large portion of
web search traffic. On the other hand, if the model predicts with
high confidence that the query is very hard (is unlikely to yield any
good answers), query suggestion and reformulation mechanisms
can be activated to help user satisfy her underlying information
need.

All the features defined in Table 1 can be used as cues for de-
termining the query difficulty. Previous work [12, 15] shows that
queries with high textual overlap with the retrieved documents are
easier. Same applies to queries that retrieve documents with high
static ranks [23]. We also expect popular (many clicks and vis-
its) queries to be easier. Teevan et al. [33] show that click en-
tropy is useful in predicting the ambiguity of a query. Lee et al.
[22] demonstrate that summaries of click and anchor-text distribu-
tions are useful for the identification of user goals in web search.
Agichtein and Zheng [1] show that click statistics can be leveraged
to identify “best bet” queries (queries that have a “Perfect” answer).

Thus, the query difficulty prior can be viewed as a generalization
of previous approaches to query performance prediction. Using
our feature aggregation method all of the above features can be
combined into a single feature vector, and their aggregates can be
computed as shown in Table 2. Indeed, as our experiments show,
a combination of features and aggregates using a statistical model
will attain a better performance than any of them by themselves.

3.2.1 Model Construction
To estimate query difficulty, we build a model of the form l̂q ∼

fq , where fq is derived from pairwise feature vector fqu, using Eq.
2. Multinomial logistic regression5 is used for estimating l̂q . In a
multinomial regression, a probability of a label l given observation
fq is determined by

p(l|fq) =
exp(wT

l fq)
P

l′∈[1,...,5] exp(wT
l′
fq)

,

where wl′ is a vector of weights which maximizes the likelihood
of the training set. For each query q in the test set, the estimated
query difficulty is obtained by

l̂q = argmax
l∈[1,...,5]

p(l|fq).

3.2.2 Model Evaluation
For evaluating the query difficulty prior, we measure the agree-

ment between the rating lq assigned by the human assessors and
the rating l̂q assigned by our model. We achieve this by translat-
ing confusion matrix A (where Aij is the number of times human
raters assigned rating i, and the model assigned rating j) into a sin-
gle summary statistic.

To this end, we use the weighted variant of Cohen’s κ [10]. An
important advantage of Cohen’s κ over the more common accuracy
statistic is the fact that it adjusts for chance agreement. κ value is
negative when there is less observed agreement than is expected
by chance, zero when observed agreement can be accounted for by
chance, and approaches one when raters get closer to the complete
agreement.

We use Eq. 2 to construct the features. To evaluate the query dif-
ficulty prediction performance, we perform a 3-fold cross-validation,
5Implemented using multinom function in R package nnet. Ordinal
regression and neural network were evaluated as well, but have not shown
a significant improvement over the multinomial regression for the task of
query difficulty prediction.



(a) Features κ (b) Aggregates κ

Rqu 0.549† LOG_MEAN 0.559†
Lqu 0.374† + ENTROPY 0.575†
Rqu + Lqu 0.591 + MAX 0.588

ALL 0.591
(a) All the aggregates are used, data sources vary.

(b) All the features are used, aggregates vary.

Table 4: Cohen’s κ — Query difficulty prior estimation results.
Higher values indicate higher agreement with the human raters. +

denotes that the current row utilizes the features from the previous row
as well. Statistical differences (paired t-test, α < 0.05) with the method
that uses all the features and all the feature aggregates (boldface) are
marked with †.

Table 5: Ratings confusion matrix. Diagonal (shaded) represents
agreement between the human raters and the model.

each time using one of the folds as the test set and the rest as the
training set. Table 4 reports the mean κ over the three runs.

The results in Table 4 (a) indicate that click-data alone (Lqu) is
not sufficient to reliably predict query difficulty. However, com-
bining click data with features in Rqu, which are traditionally used
for query performance prediction, such as textual matches [12] and
static ranks [23], results in a 7% improvement in κ over the base-
line of using Rqu alone. Adding all the aggregates (Table 4 (b))
leads to a 5.5% improvement over using a single LOG_MEAN ag-
gregate. These improvements are statistically significant, and con-
sistent over all folds in the test set.

Table 5 presents the breakdown of the confusion matrix A for
our best performing model that includes all the features and all the
aggregates on a development set of 3, 000 queries. Note that for
more than half of the queries there is a perfect agreement between
the raters and the model. For 94% of the queries the ratings deviate
by at most one relevance level. Only for two (out of 3, 000) queries
there is a complete disagreement between the model and the raters.

We also compare the agreement of our model with a given human
rater to the agreement between human raters. As we do not have
multiple ratings for all the queries, we extract a subset of 2, 057
queries for which ratings from at least 7 human judges are avail-
able. Average weighted κ between all the judges pairs for these
queries is 0.47, which is lower than the agreement achieved by our
model. This result is in line with previous research on human eval-
uation in IR (see for instance Bailey et al.[2]).

We conclude that given a training set of reliable human ratings,
our model learns a reasonable estimate of a query difficulty prior
on a held-out set, perhaps better than one that could be produced
by a single human rater. This result affirms our intuition about the
utility of different features and feature aggregates and motivates
further investigation of an additional type of query prior.

3.3 Query Click Types Prediction
In addition to human relevance ratings, the search log itself pro-

vides an evidence to the nature of the query: click types. Recall
from Section 2.3 that query log Lqu contains, along with the num-
ber of clicks and click positions, an information about the click

(a) Commercial intent
Feat. RMSEad Agg. RMSEad

Rqu 1.694† LOG_MEAN 0.753†
Lqu 0.757† + ENTROPY 0.729
Rqu + Lqu 0.724 + MAX 0.744

ALL 0.724

(b) Malleability
Feat. RMSEsug Agg. RMSEsug

Rqu 1.535† LOG_MEAN 0.887†
Lqu 0.949† + ENTROPY 0.860
Rqu + Lqu 0.885† + MAX 0.867†

ALL 0.885†

Table 6: RMSE — prediction of number of clicks of types ad (comm.
intent) and sug (malleability) when varying the features and aggregates
used in the model. Lower values of RMSE indicate more accurate pre-
dictions. Statistical differences (paired t-test, α < 0.05) with the best
performing model (boldface) are marked with †.

types. In this paper we focus on two click types common in web
search: ad— click on a sponsored search result and sug— click on
a query suggestion.

Number of ad clicks measures the commercial intent of the query.
If the proportion of ad clicks is expected to be high for a particu-
lar query, more page real estate may be allocated for displaying
the ads. Alternatively, an ad display may be reduced/removed if
little/no ad clicks are expected.

Number of sug clicks measures the query malleability, or how
likely is the user to utilize a query suggestion proposed by the
search engine to reformulate her query6. A high expected propor-
tion of sug clicks for a particular query may lead to allocating more
page real estate to query suggestions.

Query commercial intent and query malleability can both be cast
as query priors. Accordingly, we examine how the technique de-
scribed in Section 3.1 can be used to determine the expected num-
ber of these click types. As previously, we are not committed to a
specific feature type or aggregate.

3.3.1 Model Construction
Most generally, we are estimating a model of the form n̂

q
t ∼ fq ,

where n̂
q
t is the estimated number of clicks of type t for query q,

and fq is given by Eq. 2. In our experiments, we use a neural
network method as an estimation method. A single-hidden-layer
neural network with 3 units in the hidden layer and a linear out-
put is trained7. The advantage of the neural network over linear
regression is its ability to learn a non-linear model of the features.
This advantage was verified in our preliminary experiments, where
neural network outperformed several methods based on a linear re-
gression.

3.3.2 Model Evaluation
For evaluating the click type prior, we use the root mean square

error (RMSE), a standard measure of the differences between the
observed values (number of actual clicks, n

q
t ), and the values pre-

dicted by the model (predicted number of clicks, n̂
q
t ). We calculate

6An alternative way to measure query malleability is through tracking
queries that are often reformulated by the users themselves, however ob-
taining this information is not as straightforward as counting sug clicks
[18].
7Implemented using R package nnet.
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Figure 3: NDCG@{1− 10} — document ranking results. Plots compare the performance of each of the three baseline rankers to the performance
of the baseline ranker combined with the click-based document prior.

RMSE for a certain type of click t as

RMSEt =

s

P

q∈Q
(n̂q

t − n
q
t )

2

|Q|
,

where Q represents the queries in the test set. Lower values of
RMSE indicate better prediction performance.

We use Eq. 2 for constructing the features. To evaluate the model
performance, we perform a 3-fold cross-validation, each time using
one of the folds as the test set and the rest as the training set. Table
6 reports the mean RMSE over the three runs for predicting com-
mercial intent and query malleability. Table 6 compares the perfor-
mance of our model when using features from different repositories
and different aggregates of these features.

Using several aggregates is always better than using LOG_MEAN
alone. An addition of aggregates results in statistically signifi-
cant reductions of up to 3.9% in RMSEad for commercial in-
tent, and up to 3.0% in RMSEsug for query malleability. Note
that just as an optimal feature selection can often lead to an im-
proved prediction in statistical learning models, same holds for
aggregate selection. For instance, for query malleability, using
LOG_MEAN + ENTROPY aggregates leads to an improvement of
2.8% over the baseline of using all the aggregates. Investigating
techniques of optimal aggregate and feature selection for prior es-
timation is an interesting direction for future work.

Another interesting result in Table 6 is the contribution of non-
click features (features in Rqu) to the performance of the model.
Incorporation of features from Rqu in both cases leads to statisti-
cally significant reductions in RMSEt over using click data (fea-
tures in Lqu) alone. RMSEad reduces by 4.4%, while RMSEsug

reduces by 6.7%.
These improvements are especially valuable for queries in the

long tail, for which little or no click data is available, as they show
potential for predicting user click behavior based on non-click fea-
tures such as static ranks of retrieved documents or their retrieval
scores. In fact, we found that considering only the features in Rqu

halves the RMSEt in comparison to the baseline of using an av-
erage number of clicks of type t as an estimate for n̂

q
t . To the best

of our knowledge, improving click types prediction using non-click
features is a novel result, not reported in any previous work.

4. DOCUMENT PRIORS

4.1 Document Prior Definition
As we have seen in Section 2.2, document priors are symmetri-

cal to query priors: both are obtained by marginalization over the
pairwise query-document features. Hence, for a task of document
prior estimation, we need to obtain a document-dependent reposi-
tory Ru, consisting of set of tuples {(u, fu)} from pairwise features
fqu. We can use a similar aggregation method to that presented in
Section 3.1, this time aggregating over queries, rather than docu-
ments.

Each document u is represented in Ru by a feature vector fu of
size |a| ∗ |fqu|

u, where |a| is the number of aggregates used in the
model, and |fqu|

u is the number of available pairwise features for
u. Each feature fu ∈ fu is of the form

fu = Gq∈q(fqu), (3)

where q represents the set of queries for which pairwise features
with document u are available, and Gq∈q(·) is one of the aggregate
functions defined in Table 2 (being defined over queries, rather than
documents).

4.2 Ranking with Document Priors
The utility of document priors for document ranking is not new.

Previous research indicates that using both textual [3, 32], link-
based [11, 28] and toolbar-based [25] document priors leads to sig-
nificant improvements in the retrieval performance. As our docu-
ment prior model allows for incorporation of pairwise features (that
depend on both the query and the document) through aggregation,
it allows us to evaluate a novel click-based document prior, not
considered in the previous work. This prior consists of the click
aggregates described in Section 4.1.

Note that our click-based document prior differs from previous
applications of click data for ranking optimization (e.g., [17]). While
previous work only exploits clicks for a given query and a given
document, our click-based document prior incorporates informa-
tion about clicks from other queries as well. Recall that for each
document u our prior considers aggregates of number of clicks
and their positions for all the queries for which clicks on u were
observed. This allows bootstrapping information from the entire



query log, even when ranking documents in response to queries
that have very sparse click data, or no click data at all.

We use RankNet [7] for document ranking, as this method pro-
vides a flexible framework for incorporating multiple features into
the ranking function. To demonstrate the contribution of aggre-
gated clicks, we start with three baseline rankers that do not include
the information on the click data.

First baseline ranker, Text, uses only the four text-based fea-
tures defined in Table 1. Second baseline ranker, Text+SR, uses
the text-based features and the link-based features defined in Ta-
ble 1. Third baseline ranker, All, uses the entire available feature
set used for training the RankNet [7] (set which includes all the
features in Rqu).

For each of these baseline rankers we add a click-based prior,
which is comprised of the five aggregates of the two features in
Lqu, namely the number of clicks and their positions (see Table
1). Fig. 3 compares the performance of each baseline ranker to
that of the baseline ranker combined with the click-based prior. We
measure performance in terms of average NDCG@k (normalized
discounted cumulative gain at rank k). NDCG@k is often used
in web search [7], where accuracy at the top of the ranked list is
important, and there are multiple levels of relevance. NDCG@k
for query q is computed as

NDCG@kq = Zq

k
X

i=1

25−liqu − 1

log(1 + i)
,

where Zq is a normalizing constant and liqu is the relevance rating
of a document at i’th rank.

As we can see from Fig. 3, the gain for ranker Text is the
largest, reaching the maximum of 4.6% for NDCG@{4 − 6}.
The average gain for ranker Text is 4.2%. The gains for rankers
Text+SR and All are smaller, as these rankers include some doc-
ument prior information through link-based and toolbar-based fea-
tures. The average gains for Text+SR and All, when click-based
prior information is added, are 1.8% and 0.8%, respectively. These
gains are consistent over all the positions, as Fig. 3 demonstrates.
Although the gains are quantitatively small, all of them are statisti-
cally significant, due to the large size of the query set.

5. RELATED WORK
Our model of prior knowledge in web search is inspired by sev-

eral active areas of research. These areas were mostly explored in-
dependently, however, as we show, they can all be expressed within
our framework as prior estimations.

Section 3.2 draws upon a long line of research on query perfor-
mance prediction [8, 12, 13, 15, 23]. Most research in this area
concentrated on textual features of a single retrieved set of docu-
ments. We extend this approach, and show that combining textual
features with visitation counts, link graph structure and click data
aggregates further improves prediction of query difficulty.

Sponsored search can be framed as an ad hoc document retrieval,
where ads are retrieved in response to a query. Recent work has in-
vestigated the impact of the posterior (the quality of the retrieved
set of ads) for learning when (not) to advertise [6]. In Section 3.3
we take a complementary approach, which estimates the prior of
observing ad clicks given a query, regardless of the quality of the
retrieved ads. Combining the two approaches is an interesting di-
rection for future work.

Another area of research relevant to this paper is search person-
alization. Some recent work in this area proposed that the perfor-
mance gains that can be attained by personalization (“potential for
personalization”) vary by query [14, 33]. We demonstrate that po-

tential for personalization can be viewed as prior knowledge about
the query at hand, and tie it to other prior knowledge aspects such
as query difficulty.

There is a rich past research on document priors. Previous work
was usually restricted to document-dependent features such as doc-
ument length [32, 3, 20], anchor text [20, 28], document centrality
in a link graph [4, 19, 11], document popularity (based on toolbar
activity) [25] and a combination of all of the above [30]. In Section
4.2, we show that using aggregates of pairwise query-document
features such as clicks in addition to previously explored document-
based features can lead to better document prior estimate and im-
proved ranking.

Most important contribution of our work is in showing that all
of the above research problems can be formulated within a single
framework for prior knowledge estimation. Unlike previous work,
our framework is not committed to a specific type of knowledge,
can be applied to both documents and queries and allows incorpo-
rating any query-dependent features, document-dependent features
and pairwise query-document features through multiple aggregate
functions.

6. CONCLUSIONS
In this paper we proposed a unified framework for estimation of

prior knowledge in web search. Within our framework, a single
set of document-dependent, query-dependent and query-document
dependent features is used for estimating prior knowledge, and doc-
ument and query priors are obtained by a feature aggregation pro-
cess, which marginalizes out the dependencies on the unwanted
dimension.

We empirically demonstrate that our framework for estimating
prior knowledge about both the documents and the queries can be
successfully applied to a diverse set of tasks using the same set
of features. Some of these tasks (e.g., query difficulty prediction
or document ranking) were explored in previous work in separate
contexts using distinct data sources; some of these tasks are new
(e.g., detecting query commercial intent and query malleability).

For all of the examined tasks we show that more is more: within
our framework, a combination of multiple data sources (e.g., web
link graph, toolbar counts, retrieval scores or click data) and mul-
tiple aggregates (e.g., mean or entropy) into a unified set of fea-
tures always posits statistically significant performance improve-
ments over the baselines that use either a single data source or a
single aggregate.
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