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Abstract

Traditional authorship attribution approaches
have made attempts at capturing features
that were designed heuristically – researchers
guessed at which aspects of language would
best separate one author from another and then
performed experiments to see how valid their
assumptions were. While this approach has
met some success, it also proves to be un-
scalable – most test collections to date have
been on the size of 10 or less authors, which
in the age of internet-style publication is an
unrealistically low quantity. We believe that
this approach to feature selection for author-
ship attribution adds unnecessary complexity
to what the task really seems to be: a multi-
class classification problem, and one where
the most useful features can be easily discov-
ered using a standard dimensionality reduc-
tion technique. We demonstrate the use of
such a technique to dramatically reduce the
number of used features for authorship attribu-
tion using an implementation of Support Vec-
tor Machines.

1 Introduction

The task ofauthorship attribution(henceforth,AA)
is assigning an author to a particular document or
work. While the number of plausible authors has
ballooned due to the advent of the internet, the col-
lections used forAA research have more or less re-
mained static. Multiple approaches toAAhave been
developed, and many have been shown to be exper-
imentally successful, however relatively little work
has been done towards demonstrating the effective-
ness of these approaches to large-scale data sets. In

this work we test the plausibility of using statistical
inference to automatically select a sufficient subset
of all possible features to use in a standard machine-
learning approach toAA. We use a corpus of works
from various time periods and multiple languages to
provide a realistic, heterogeneous representation of
theAAproblem.

2 Previous Work

Throughout most of its history, researchers typi-
cally approach the task ofAA by manually select-
ing a subset of stylometric features such as function
words (Zhao et al., 2006), POS counts (Stamatatos
et al., 2001), punctuation and sentence length (Sta-
matatos et al., 2001; Holmes, 1998) or letter n-grams
(Khmelev and Tweedie, 2003; Keselj et al., 2003).
Despite several studies that attempt to evaluate these
kinds of features (Stamatatos et al., 2001; Holmes,
1998; Koppel and Schler, 2003), the evaluation has
been mainly performed on collections that pale in
comparison to what we would consider standard-
sized collections today.

More recent work such as (Diederich et al., 2000)
and (Koppel et al., 2006) has provided us with some
empirical basis for our investigation; the former
work makes a compelling argument for SVMs be-
ing the most appropriate technique to approach this
task, while the latter introduces what we feel to be
the most realistic setting for theAA task to date.



3 Our Approach

3.1 Corpus

Our source data comes from Project Gutenberg1, an
online source of free electronic books. Currently
the project contains over17, 000 books in various
languages. We selected100 authors with multiple
works contained in the collection. Table 1 shows
some of the statistics of the collection. For our
experiments, we partitioned the collection into10
overlapping data sets, ranging from10 to 100 au-
thors.

# # books # unique # terms
authors per author terms/author per book

100 30 5,367 58,240

Table 1: Collection statistics. Average counts of books
per authors and terms per book are presented.

In addition to the size of the collection, which
distinguishes it from collections previously used for
AA, there are several interesting observations that
differentiate the data sets studied here from other
data sets that are typically used for text classifica-
tion:

• High dimensionality. The richness of lan-
guage in our setting leads to even larger num-
ber of unique terms than is usual in text classifi-
cation. A classicalReuters-21578set contains
27, 658 distinct terms, almost3 times less than
the smallest of our data sets (73, 743 unique
terms for 10 authors).

• Small number of large documents. Collec-
tions used for text classification evaluation typ-
ically consist of large number of relatively short
documents (e.g., newswire, academic paper ab-
stracts, etc.). Our data sets, on the other hand
consist of a small number of very long docu-
ments (books). Again, compared toReuters-
21578that contains above21, 578 documents,
our largest data set contains only3, 003 docu-
ments. When considering the semi-supervised
classification task, this leads to an intriguing
setting, where train examples are scarce, but
each example is semantically rich.

1http://www.gutenberg.org/wiki/MainPage

• Non-topical class relations. Typically, docu-
ment classification is based on document top-
icality. In our data sets, we instead assume
that each author can be associated with a dis-
tinct term distribution, but this distribution is
not necessarily topic-driven.

3.2 Data Normalization and Preparation

To normalize the data for feature extraction the fol-
lowing steps were taken:

• Anonymization. Any mention of the author’s
name was removed from the text of the book.
In addition, the book header (first 50 lines of
the book) was removed in order to prevent
any metadata from influencing the classifica-
tion process.

• Stemming and Stopwords removal. We used
the standard INQUERY (Allan et al., 2000)
stopwords list and the well-known Porter stem-
ming algorithm2.

• Indexing. To facilitate efficient feature extrac-
tion, the normalized book collection was in-
dexed using the INDRI search engine3 .

3.3 Feature Construction and Selection

We take thebag of wordsapproach, which was
proven to be successful in both information retrieval
(Salton et al., 1975) and document classification
(Joachims, 2002) settings. In other words, we rep-
resent each book as a vector of length-normalized
term counts. As term vectors are highly-dimensional
and sparse, classification using all features becomes
intractable for large datasets. Instead, we consider
feature selection based on mutual information.

Mutual Information. Feature selection based on
mutual information of the features is a common pro-
cedure in document classification (Joachims, 2002).
In our case, termt is ranked by mutual information
with the author class variablea, or formally

MI(t) =
∑

a∈A

P (a)P (t|a) log
P (t|a)

P (t)
, (1)

2http://www.tartarus. org/martin/PorterStemmer
3http://www.lemurproject.org/indri/



whereA is the set of all possible author classes,
and probabilities are computed using maximum-
likelihood estimates.

Number of features. We initially used a standard
approach, where the number of features to use in
the learning algorithm is set a priori to some con-
stantC. However, we observe that as the number
of possible classes (authors) grows, so does the per-
plexity of a distribution over the terms in the col-
lection (note that each new author adds on average
more than5, 000 unique terms to the collection –
see Table 1). If we assume Zipf’s Law (Zipf, 1949)
holds for our collection, the number of potential fea-
tures will monotonically increase sublinearly as the
number of authors increases. Hence, we assume that
number of features to use in the learning algorithm
should increase log-linearly with the number of po-
tential authors. That is, for collection containingna

authors, the number of features used in the learning
algorithm will be

ν(na) = C(1 + α log na), (2)

whereα ∈ [0, 1] is a damping factor.

4 Experimental Results

As described above, in our experiments we consider
10 overlapping data sets, the smallest containing162
books from10 authors, and the largest containing
3, 003 books from100 authors, all normalized ac-
cording to the procedure outlined in Section 3.2.

All authorship attribution experiments are done
usingSV Mmulticlass. For a linear kernel, used in
our experiments,SV Mmulticlass is quite efficient,
and its runtime scales linearly with the number of
training examples4. We use a 5-fold cross-validation
to evaluate an average accuracy of theAA task on the
various data sets.

We run three types of classification experiments:
SVM[all], SVM[C]andSVM[ν(na)] . SVM[all] uses
all features (terms) to perform theAA task, while
SVM[C] and SVM[ν(na)] use a subset ofC and
ν(na) (Equation 2) features, respectively, selected
by the mutual information metric (Equation 1). We
setC = 500, α = 0.64 in our experiments.

4http://svmlight.joachims.org/

Runtime cpu/sec
# authors 10 20 30
SVM[all] 93.72 434.16 871.38
SVM[C] 9.99 28.32 148.48

SVM[ν(na)] 10.65 46.28 248.80

% Accuracy
# authors 10 20 30
SVM[all] 97.54 93.22 93.59
SVM[C] 92.58 90.25 88.17

SVM[ν(na)] 95.07 92.79 92.31

Table 2: Comparison ofAA task performance for 10, 20
and 30 author data sets. The top table compares runtime
in seconds/cpu, while the bottom table compares average
accuracy.

SVM[all] vs. SVM[C] and SVM[ν(na)] Table 2
illustrates the performance in terms of runtime and
accuracy for all three classification methods on the
three of our smallest datasets. We note that the re-
sults of our experiments seem to support the hypoth-
esis that a limited number of features helps to sus-
tain a reasonable accuracy across growing data sets,
while dramatically reducing the runtime. Encour-
aged by these results we turn to examine the per-
formance ofSVM[C] andSVM[ν(na)] on the larger
data sets.

SVM[C] vs. SVM[ν(na)] In terms of average ac-
curacy (right-hand graph at Figure 1), the perfor-
mance of bothSVM[C] and SVM[ν(na)] remains
quite stable as the number of authors goes up: in
both cases, accuracy drops only10%, when mov-
ing from 10 to 100 authors data set. When jux-
taposing the relative performance ofSVM[C] vs.
SVM[ν(na)] , we note that adding more features uni-
formly improves accuracy, as expected. Comparing
the accuracy results vectors for these two methods
using Wilcoxon rank-sum test, shows that this im-
provement is statistically significant (p < 0.02).

The left-hand graph at Figure 1 demonstrates that
both for SVM[C] and SVM[ν(na)] the runtime of
the classification procedure does not scale too well
as the number of possible classes (authors) grows.
SVM[ν(na)] seems to be especially sensitive to this
— note the sharp runtime increase when number of
authors grows from70 to 80.
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Figure 1: Comparison ofSVM[C] andSVM[ν(na)] performance.

5 Conclusions

We have shown that a machine learning approach to
AA need not fall victim to the curse of dimensional-
ity when encountering large data sets. A simple fea-
ture selection procedure using techniques from in-
formation theory can reduce the number of possible
features by orders of magnitude while still maintain-
ing classification accuracy to within a few percent of
using all of the available features.

We believe that the future direction of feature se-
lection forAAwill be necessarily driven by methods
that can adjust to the changing characteristics of the
data, and therefore require methods that emphasize
certain features using statistical information present
in those data sets.

Another important direction inAA research is
tackling the problem of scaling the performance of
exisitng multi-class categorization models for large-
scale corpora with hundreds or thousands of candi-
date classes.
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