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Abstract

Throughout the last decade or so, search engines (e.g., Google)
have become a crucial tool for discovering information in on-line data
repositories. Finding documents in a corpus (repository) that pertain
to users’ queries is a hard challenge, especially in light of increasingly
large and diverse corpora as the World Wide Web (WWW), for exam-
ple.

The ad hoc retrieval task, which is the principle task that search
engines perform, is to rank documents in a corpus in response to a
query by their assumed relevance to the information need it represents.
While there are numerous challenges involved in ad hoc retrieval, one
of the prominent ones is the fact that a document could be of interest
to a user (or deemed relevant to the user’s query) even if only (very
few, potentially small) parts of it, i.e., passages, actually contain in-
formation that pertains to the information need. Therefore, in such
situations methods that compare the document as a whole to the query
face significant difficulties in detecting the required documents.

Passage-based document-retrieval approaches address this challenge
by using the information from (only some of) the document passages
to rank a document in response to a query. In this thesis we show that
several of these previously proposed passage-based approaches, along
with some new ones, can in fact be derived from the same probabilistic
model.

While our formulation and derived ranking algorithms are not com-
mitted to any specific estimation paradigm, we use the successful lan-
guage modeling framework to instantiate specific algorithms. In doing
so, we propose a novel passage language model that integrates infor-
mation from the ambient document to an extent controlled by the es-
timated document homogeneity. Several document homogeneity mea-
sures that we propose yield passage language models that are more
effective than previously proposed ones. Furthermore, we demonstrate
the benefits in using our proposed passage language model for con-
structing and utilizing a passage-based relevance model.

Finally, we show that our proposed document-homogeneity mea-
sures are also effective means for integrating document-query and passage-
query similarity information for document retrieval.



1 Introduction

With the enormous increase in recent years in the volume of information
available on-line, and the consequent need for better techniques to access this
information, there has been a strong resurgence of interest in information
retrieval research.

Search engines, e.g., Google1, play an important role nowadays in tasks
such as information discovery and retrieval. A search engine lets a user
submit a query representing some information need and retrieves in response
a list of documents that are considered relevant to this need. This list
is often sorted with respect to some measure of assumed relevance of the
results. Thus, search engines perform the ad hoc retrieval task, which is to
rank documents in response to a query by their assumed relevance to the
information need it represents [42]. Search engines offer an access to an
unprecedented amount of heterogeneous and unstructured information, and
selecting and ranking specific documents by their relevance to users’ queries
from such large and diverse corpora is a hard challenge.

While there are numerous challenges involved in ad hoc document re-
trieval, one of the prominent ones is the fact that a document could be
of interest to a user (or deemed relevant to a user’s query under certain
relevance-judgment regimes) even if only (very few, potentially small) parts
of it, i.e., passages, actually contain information pertaining to the query. For
example, consider a web page containing messages from various news feeds.
It could be the case that a single feed is relevant to a certain query; how-
ever, if we treat the web page as a single monolithic document this relevance
could potentially have only limited influence on the overall page ranking in
response to the query. On the other hand, if we treat the web page as com-
posed of passages (passages in this case are the various feeds), we could use
this view in order to better match the document and the query (e.g., show
the user the most relevant feed in response to her query).

Indeed, passage identification and utilization in information retrieval has
been the focus of research for quite some time [19, 7, 45, 28]. Utilization of
passages has been shown to be highly beneficial for a variety of information
retrieval tasks: classical ad hoc retrieval [7, 28, 19, 45, 6], question answering
[15, 8], query expansion [5] and classification [10] to name just a few. In
the case of ad hoc retrieval, one could either choose to return the relevant
passages as a result [2], or to simply mark the entire document as relevant
if it contains (some) relevant passage(s) [7, 28, 45].

1http://www.google.com/
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The focus of the work presented here is on the latter — deriving passage-
based methods for retrieving documents. Indeed, the merits of passage-
based document retrieval have long been recognized [37, 7, 31, 45, 18, 10,
19, 28]. Perhaps the most prominent one is that using passages rather than
whole documents to induce document ranking is more effective for detecting
long (or heterogeneous) relevant documents with many parts that contain
no query-relevant information, as in the case of the web page example from
above.

In this thesis we present a simple formal probabilistic formulation for
passage-based ad hoc document retrieval. Using this formulation we show
that some previously proposed passage-based document retrieval principles
[7, 45, 19, 28] can be derived from the same model if some assumptions and
estimation choices are made. We present several concrete instantiations of
our probabilistic formulation.

One such instantiation ranks a document by the highest query-similarity
score of any of its passages, which echoes some past work [7, 45, 19, 28]; an-
other instantiation interpolates this score with the document-query similar-
ity score [7, 45], which also bears similarity to some previously proposed ap-
proaches [7, 45, 6]. We also derive a generalized form of the latter by control-
ling the reliance on document-based versus passage-based query-similarity
evidence using document homogeneity measures, which we propose: the more
heterogeneous the document is assumed to be, the more weight is given to
passage-based evidence.

Our formulation and derived methods are not committed to a specific
estimation paradigm. To instantiate specific algorithms, however, we choose
the successful language modeling framework to retrieval [34, 9]. In doing
so, we derive a new passage language model that utilizes information from
the ambient document to an extent controlled by the same homogeneity
measures used for the interpolation-based ranking approach from above;
the more heterogeneous the ambient document is considered to be, the less
the passage language model relies on information from other passages in the
document.

Using an array of experiments performed over various TREC corpora, we
show that few of the document-homogeneity measures that we propose yield
passage language models that are more effective than the standard passage
model [28] for basic passage-based document ranking and for constructing
and utilizing passage-based relevance models [28]. The later also outperform
a document-based relevance model [25].

Furthermore, we explore the retrieval performance of a novel language-
model-based algorithm that integrates document-query and passage-query
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similarity information based on the proposed document-homogeneity mea-
sures. Experimental results demonstrate the effectiveness of this algorithm
with respect to standard document-based and passage-based document re-
trieval in the language modeling framework.

Finally, we further demonstrate the merits in using document-homogeneity
measures through a comparison with the common practice of fixing the bal-
ance in utilizing document versus passage information to the same degree
for all documents [7, 1, 15, 32, 44].

The remainder of this thesis is organized as follows. Chapter 2 lays
down the basic concepts of the language modeling approach to informa-
tion retrieval that are used throughout this thesis. Chapter 3 surveys the
related work on passages’ identification and utilization in information re-
trieval in general and specifically in the context of language models. Chapter
4 presents the probabilistic formulation of the passage-based ad hoc docu-
ment retrieval task, while Chapter 5 presents our novel homogeneity-based
passage language model that is used to instantiate some specific retrieval
methods. Chapter 6 presents a view of some of our passage-based retrieval
models as standard document retrieval methods that utilize a certain form
of document representation. Chapter 7 describes the various experiments we
conducted to test the performance of our retrieval methods. In Chapter 8
we draw conclusions and discuss some potential directions for future work.
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2 Statistical Language Models

Statistical language models play a central role in this work. In this chapter
we overview their utilization in ad hoc information retrieval and lay out the
definitions and notations that will be used throughout this thesis.

A statistical language model is a probability distribution that captures
the statistical regularities of language generation [35]. It determines how
likely a given string is in a language, given a model of language genera-
tion. Statistical language modeling is used in a large variety of language
technology applications. These include speech recognition, machine trans-
lation, document classification and routing, optical character recognition,
handwriting recognition, spelling correction, information retrieval and many
more. (See Rosenfeld [35] for a survey of language models and their use in
various fields)

There is an abundance of work on application of language models in
information retrieval, since their first use by Ponte and Croft [34]; among
the most frequently used models is the query-likelihood model [34, 30, 13, 40].

In the query-likelihood model, one estimates the probability of a query
being generated by a probabilistic distribution over a fixed vocabulary in-
duced by a document. For a query q and a document d this generation
probability is often denoted p(q|d). In order to rank documents we use the
posterior probability p(d|q) [34, 24], which can be written using Bayes’ rule
as

p(d|q) =
p(q|d)p(d)

p(q)
.

Since p(q) is not dependent on the document and in lack of prior informa-
tion p(d) is assumed to be uniformly distributed, the ranking task reduces to
estimating p(q|d). This model has been commonly used in work on language
models in information retrieval [34, 25, 46, 40, 13, 30] (see Lafferty and Zhai
[24] for extended details), and will be used in this thesis as well.

2.1 Unigram language models

While there is a large number of methods for estimating the probability
p(q|d), in this thesis we take the widely used approach in ad hoc retrieval
and utilize unigram language models, which were shown to be quite effective
[9, 40, 46, 30]. Unigram language models assume that terms are independent
of each other. We use px(·) to denote the (smoothed) unigram language
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model induced from text x. Next, we present an approach for estimating
px(·).

Language model induction Let tf(w ∈ x) denote the number of occur-
rences of term w in the text x. The maximum likelihood estimate (MLE) of
w with respect to x is

p̃MLE
x (w)

def
=

tf(w ∈ x)∑
w′ tf(w′ ∈ x)

.

To assign probability to terms unseen in x (a.k.a. the zero probability
problem), we smooth the estimate using corpus statistics [46]

p̃[basic]
x (w) = (1 − λC)p̃

MLE
x (w) + λC p̃

MLE
C (w). (1)

In the above estimate λC is a free parameter. Setting λC to a fixed value,
we get the Jelinek-Mercer smoothing technique [46]. Alternatively, we can
set λC = µ

|x|+µ
(|x| =

∑
w′ tf(w′ ∈ x); µ is a free parameter) and get the

Bayesian smoothing approach with Dirichlet priors [46].

To extend the estimate p̃
[basic]
x (w) to a sequence of terms w1w2 · · ·wn,

we follow the unigram-language-model term-independence assumption and
define

p[basic]
x (w1w2 · · ·wn)

def
=

n∏

j=1

p̃x(wj). (2)

We can use the estimate just defined for estimating px(·).

2.2 Relevance models

In the following chapters we will also examine the utilization of passages for
constructing relevance models [28]. We now describe the fundamentals of
the relevance model approach [25].

Lavrenko and Croft [25] take the following generative perspective on the
ad hoc retrieval task. They make the assumption that both the query and
the relevant documents are samples from an underlying relevance model R.
In order to estimate the relevance model they use the joint probability of
observing some term w together with the terms q1, . . . , qm of query q

p̃R(w) ≈
p(w, q1, . . . , qm)

p(q1, . . . , qm)
. (3)
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Lavrenko and Croft [25] describe two methods of estimating the joint
probability p(w, q1, . . . , qm). Both methods assume that there exists a set D
of underlying source distributions from which w and q’s terms could have
been sampled. The two methods differ in the independence assumptions they
make. Method 1 assumes that w and q’s terms are mutually independent
once we pick a source distribution from D. Method 2 assumes that q’s
terms are independent of each other, but are dependent on the choice of w.
Following prior work on passage language models [28], and given the general
superiority of Method 1 to Method 2 [26] we utilize Method 1 in our work
and present it formally in what follows.

If we set D to be the set of all document models and assume mutual
independence of w and q’s terms q1, . . . , qm, we can write

p(w, q1, . . . , qm) =
∑

d∈D

p(d)p(w|d)
m∏

i=1

p(qi|d) =
∑

d∈D

p(d)p(w|d)p(q|d).

Using Bayes’ rule, this can be rewritten as

p(w, q1, . . . , qm) =
∑

d∈D

p(q)p(w|d)p(d|q).

If we substitute the equation above into Equation 3, pR(w) is then

p̃R(w) ≈
∑

d∈D

p(d|q)p(w|d),

where p(d|q) can be estimated by

p(d|q) =
p(q|d)p(d)

p(q)
=

p(q|d)p(d)∑
d∈D p(d)p(q|d)

.

In absence of any prior information p(d) can be assumed to be uniformly
distributed. p(w|d) and p(q|d) can be estimated using pd(·), the smoothed
unigram language model induced from d and calculated using Equation 1,
wherein x corresponds to document d from D. Note that since in practice
pd(q) will be near-zero for all but a few highest-scoring documents in the
collection, we can compute pR(w) using only the top-n retrieved documents
in a search performed using p(q|d) (i.e., the query likelihood model) [26].
This allows the estimation process to scale well for large corpora.

After the estimation of pR(·) is accomplished, following Lavrenko et
al. [26], we use the Kullback-Leibler divergence metric to rank documents.
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Specifically, we use the KL divergence between a relevance model R and a
document model pd(·), which is defined as:

D
(
p̃R(·)

∣∣∣
∣∣∣ p̃d(·)

)
=

∑

w

p̃R(w) log
p̃R(w)

p̃d(w)
. (4)

Documents are ranked in increasing divergence order, i.e., documents
that have a smaller divergence from the relevance model are considered to
be more relevant to the query.
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3 Related Work

The inspiration for the work reported in this thesis is drawn from two areas of
research in information retrieval: language modeling and passage retrieval.
Language models are discussed in detail in Chapter 2. In this chapter we
give an overview of past research on passage retrieval in Section 3.1 and
describe the work done on utilization of passage language models in Section
3.2.

3.1 Passage retrieval

The ad hoc retrieval task is to find information pertaining to a need ex-
pressed by some query. Perhaps the most well known form of ad-hoc re-
trieval is document retrieval. However, there are cases wherein documents
are highly heterogeneous, and using only the most relevant document por-
tions might be of value. We refer to these portions as passages.

Passages can be used in two ways for ad hoc retrieval. First, we can
return passages as a result of the query. Alternatively, passages can be used
to retrieve documents. In both cases, the retrieval task is to find passages
that might pertain to a user’s query. In the second case, however, these
passages are used to evaluate the relevance of their ambient documents.
The focus of this thesis is on the latter.

As described above, passage-based document retrieval can be of help
in cases wherein only small portions of a relevant document contain in-
formation that is relevant to the query. In such cases, when metrics that
compare the entire document to the query are computed for the purpose of
document ranking, the non-relevant document parts potentially mask the
relevant passages’ contribution to the overall score [45, 7, 11]. For example,
consider a comprehensive book on the topic of information retrieval, wherein
only a single section discusses passage-based retrieval [11]. If the entire book
is considered as an indivisible monolithic document, this section will have
very limited influence on the overall document rank for a query discussing
the subject of passage-based retrieval.

The main challenges in passage-based document retrieval research are
the identification of passage boundaries, the detection of relevant passages in
response to the query and the combination of passage-query and document-
query similarity scores. In the following sections we will discuss these chal-
lenges and survey the use of passages in various tasks in information re-
trieval.

8



3.1.1 Passage identification

Passage types can be roughly classified into three main groups [7, 19]: dis-
course passages, semantic passages and window passages.

Discourse passages are based on the document markup; examples include
sentences, paragraphs or sections boundaries. Discourse passages have been
found to work well for highly structured and edited corpora with clearly
defined boundaries (e.g., encyclopedia text [38], SGML-tagged text data as
in the AQUAINT Corpus of English News Text2 [15] and HTML mark-up
[6]). However, in more heterogeneous collections where mark-up is less rigid
and document length and structure exhibit significant variations, discourse
passages do not seem to result in consistent retrieval performance [7].

Semantic passages are based on shifts of topic within a document. One of
the efficient techniques to derive semantic passages is TextTiling [12]. This
technique groups adjacent blocks of text with high similarity into passages.
Blocks are derived from sentence punctuation, and the similarity measure
is the cosine between the vector-space representation of pairs of adjacent
blocks. Among other methods proposed for semantic passage identification
are text segmentation using the LCA method [33] and Hidden Markov Mod-
els [31, 10].

Window passages are passages that are based on fixed (or variable) num-
ber of words. This simple passaging technique was shown in some cases to
be at least as effective as other techniques for passage identification for doc-
ument retrieval [7, 18, 28]. This can be explained by the fact that semantic
or structural features may be hard to identify in heterogeneous corpora [18].
A possible problem with dividing text into disjoint windows is that a small
block of relevant text may be split between two passages. To overcome this
problem overlapping windows are often used [7, 11]. Callan [7] proposes the
following approach for building overlapping windows: begin the first passage
in a document at the first term matching the query and create a new passage
of length n every n

2 words. Liu and Croft [28] propose a similar method,
except that the first passage begins at the first word of the document. An
important difference between these two passaging methods is that the for-
mer is query-dependent, i.e., passages are built at retrieval time, while the
latter is query-independent, and passages can be built off line. In our work,
the latter approach was adopted, since it results in improved retrieval run-
time, as passage discovery and indexing is performed prior to retrieval time.
In addition, this type of query-independent passages was shown to be quite
effective, especially in the context of language models [28, 44].

2http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/
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Kaszkiel and Zobel [18, 19] propose a more robust approach for building
window passages that they term as arbitrary passages. Instead of consider-
ing a single passage size, arbitrary passages are built using text segments
of varying lengths. This assures that the retrieval effectiveness is not hin-
dered by selection of an unappropriate passage size. When no resource
constraints are imposed, arbitrary passages are all text segments of every
possible length starting at every word in a document. Since this results in
a very large number of possible passages, several approximations are pro-
posed, such as restricting possible passage lengths to certain values [18].
Although retrieval using arbitrary passages was shown to be quite effective
[18, 19, 28], it requires a considerable computation overhead, both due to
the large number of potential passages, and the fact that the passages are
calculated dynamically at query time [19].

3.1.2 Utilizing passages in Information Retrieval

Passage utilization has several important advantages in information retrieval
context. First, since passages are short, they embody locality of information
— if several query terms appear in a single passage, they must be close to
one another, which potentially implies higher relevance [18, 7]. Second, doc-
ument passages can serve as document previews that enable quick location
of relevant document portions by the users [44]. Third, passage retrieval can
be used as an intermediate step for summarization and question answering
systems [15, 32, 8].

Indeed, passages have been used extensively for a variety of tasks in in-
formation retrieval. One frequent use of passages is for question answering
systems [8, 47, 15]. In such systems, passages serve as an intermediary be-
tween full documents and exact answers, and almost all question answering
systems implement a technique for extracting passage fragments of text from
a large corpus [41]. Some recent user studies [27] have shown that users of-
ten prefer passage-sized chunks of text over exact phrase answers returned
in response to their queries, because the former provide context.

Another possible use of passages is in sentence or passage retrieval [10,
16, 32, 44]. In this type of retrieval, most relevant document passages (or
sentences) are returned to the user in response to a query, instead of docu-
ments.

Passages have also been used in web-retrieval [6], where web pages were
segmented into passages using HTML mark-up; query expansion [5], where
top-ranked passages were used for expanding the query instead of docu-
ments; and document retrieval [37, 7, 45, 31, 10, 28], where passage query-
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similarity evidence was used for document ranking.
A combination of evidences from both the highest-scoring document pas-

sage and the document itself (scores represent similarity to a query or ques-
tion) was shown to be beneficial for many of the above tasks [7, 45, 6, 15,
32, 44]. This strengthens the hypothesis (see Chapter 1) that both passage
context (e.g., in case of a single relevant passage of highly heterogeneous
document) and the ambient document context (e.g., in case of a highly ho-
mogeneous document) might play a vital role in determining the relevance
of a document.

There is an abundance of methods that utilize passage-query similarity
information for document retrieval. These include: interpolation of evidence
from the passage most similar to the query with document-query similarity
evidence using fixed weights [5, 7, 6, 45], using the highest scoring passage
to rank documents [18, 19, 28] and utilizing the weighted sum of k highest
ranked passages to rank a document [45]. We show in Chapter 4 that many
of these ranking approaches can be derived (and generalized) from the same
model.

3.2 Passage-based retrieval utilizing language models

Since passages are spans of text, techniques presented in Chapter 2 for lan-
guage model induction can be naturally employed to construct passage lan-
guage models.

One task for which utilization of passage language models was shown
to be useful is question answering [8, 47, 15]. As mentioned in Section
3.1.2, passage retrieval and ranking is an essential part of a typical question
answering system. Corrada-Emmanuel et al. [8] rank the retrieved passages
using the Kullback-Leibler divergence between the relevance model [25] and
a passage model (this approach is similar to the original relevance model
approach, except that the relevance model is built from the top ranked
passages rather than from top ranked documents). Corrada-Emmanuel et
al. [8] also show that using passage-based relevance model often results in
improved performance over the passage-based query-likelihood model [34].
In both cases, passage models are smoothed by the collection statistics.

Hussain [15] takes an approach more similar to the one we will describe
in Section 5 in that whole document evidence is combined with passage
evidence when ranking passages in a question-answering system. Passages
are first ranked using basic passage-based query-likelihood model. The top
ranked passages are then re-ranked using several techniques. The largest
performance improvement over the passage-based query-likelihood is ob-
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tained using a model that interpolates between the language model of a
passage and the language model of its ambient document. Optimal inter-
polation parameters’ values are determined using an exhaustive search over
the entire parameter space.

Similarly to Hussain’s approach, some work on sentence and passage re-
trieval [1, 44, 32] interpolate the document fragment model with its ambient
document’s statistics. Murdock and Croft [32] present two approaches for
interpolation in sentence retrieval. The first approach smoothes the sen-
tence language model with statistics pooled from the surrounding context
backed-off by the whole document language model. The second approach
smoothes sentence, document and collection language models using Jelinek-
Mercer smoothing [46]. Both approaches significantly outperform the base-
line, which is a query-likelihood model based on a sentence language model
smoothed with collection statistics. The second approach demonstrates the
best performance among the two. Wade and Allan [44] compare several
passage retrieval methods, and their Mixture of Language Models method,
which smoothes the document language model with the passage language
model and the collection language models (albeit for passage retrieval, rather
than for document retrieval), was shown to be the most effective one.

In all of the above mentioned cases, interpolation of document and pas-
sage evidence was based on fixed weights. In contrast, we will show in
Chapter 4 how to automatically set these weights based on several docu-
ment properties.

Liu and Croft’s work [28] on passage-based-language-model document
retrieval most resembles ours in that they use the passage with the high-
est query-similarity to rank its ambient document. In addition, they rank
documents using a passage-based relevance model [25]. We compare the
performance of their method to ours in Chapter 7.
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4 Retrieval Framework

In this chapter we show that a few previously proposed passage-based doc-
ument ranking principles, along with some new ones, can be derived from
the same probabilistic model.

Throughout this chapter we assume that the following have been fixed: a
query q, a document d, which we want to score in response to q, and a static
corpus of documents C (to which d belongs). We assume that passages are
identified for each document in the corpus either before or during retrieval
time. (Our formulation and derived algorithms are independent of the type
of passages being used.) We denote a passage as g, and write g ∈ d if g is
part of d; we assume that d has m passages.

4.1 Ranking models

In the ad hoc retrieval setting, the goal is to rank documents in response to
a query. To that end, we take a probabilistic approach [34, 24], and score
d in response to q by p(d|q). Assuming uniform prior distribution for docu-
ments, our task reduces to estimating p(q|d), which in the language model
framework [9], for example, can be interpreted as pd(q) — the probability
assigned to q by a language model induced by d. (See Chapter 2 for elab-
orated discussion on language models.) We hasten to point out, however,
that our formulation and derived ranking models in this chapter are not
committed to any specific estimation paradigm.

Now, given the passages in the corpus, we use basic probability theory
and write

p(q|d) =
∑

gi

p(q|d, gi)p(gi|d), (5)

where gi is some passage of some document in the corpus.
While we can (theoretically) use Equation 5 to rank d using all passages

in the corpus, our goal here is to score it using only its own passages. Thus,
we assume an estimate p̂(gi|d) — which we can interpret as “how good a
representative is gi of d” — for which

∑
gi∈d p̂(gi|d) = 1 holds.

We can derive p̂(·|d), for example, given a model of p(·|d) by setting

p̂(gi|d)
def
= δ[gi ∈ d]

p(gi|d)∑
gj∈d p(gj |d)

(δ[gi ∈ d] = 1 if and only if gi ∈ d; note that
∑

gi∈d p̂(gi|d) = 1 holds).
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We can then use the estimate p̂(gi|d) in Equation 5, and get our basic
passage-based document scoring function

Score(d)
def
=

∑

gi∈d

p(q|d, gi)p̂(gi|d). (6)

If we “believe” that a document should be scored by the “matches” of
(some of) its passages to the query regardless of its “match” as a whole
to the query — recalling the observation in Chapter 1 regarding long and
heterogeneous documents — we can then make the assumption that a query
is independent of a document given a passage and get

Score(d)
def
=

∑

gi∈d

p(q|gi)p̂(gi|d). (7)

Note that if d’s passages are marked-up sections with varying degrees of
importance, we can use p̂(gi|d) as an estimate for this importance and get
that Equation 7 is one of Wilkinson’s better performing models [45].

In lack of any such additional information regarding passages’ relative
importance, we might make the assumption that d’s passages are all equal
representatives of d and use uniform distribution for p̂(gi|d). Equation 7
then reduces to scoring d by the mean score of its constituent passages

Scoremean(d)
def
=

1

m

∑

gi∈d

p(q|gi). (8)

However, this ranking criterion implies that many passages in d should
contain information pertaining to q for d to be considered relevant, in con-
trast to our goal from Chapter 1 of detecting also long (heterogeneous)
documents that might contain a single relevant passage.

Instead of assuming a uniform distribution for p̂(gi|d), we can use maxgi∈d p(q|gi)
and the fact that

∑
gi∈d p̂(gi|d) = 1 to derive a bound for the score in Equa-

tion 7

Scoremax(d)
def
= max

gi∈d
p(q|gi); (9)

this scoring function was used in some previous work on passage-based doc-
ument ranking [7, 19, 45, 28].

The ranking models in Equations 7, 8 and 9 score a document only by
(some of) its passages’ “matches” to the query. We now consider the alter-
native of combining this information with the “match” of the document as
whole to the query, wherein we balance the two sources of information by the
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assumed homogeneity level of the document — i.e., the more homogeneous
the document is, the higher the impact its “match” to the query has on
the final score. To achieve that, we first drop the independence assumption
from above (“a query is independent of a document given a passage”) and
use the estimate3

p̂(q|d, gi)
def
= h[M](d)p(q|d) + (1 − h[M](d))p(q|gi),

where h[M](d) assigns a value in [0, 1] to d according to a homogeneity model
M. (Higher values of h[M](d) represent higher estimates of homogeneity;
we present various document-homogeneity measures in Section 4.2.)

Using this estimate in Equation 6 we get

Scoreinter(d)
def
= h[M](d)

∑

gi∈d

p(q|d)p̂(gi|d) + (1 − h[M](d))
∑

gi∈d

p(q|gi)p̂(gi|d).

Recalling that
∑

gi∈d p̂(gi|d) = 1 the equation above reduces to

Scoreinter(d) = h[M](d)p(q|d) + (1 − h[M](d))
∑

gi∈d

p(q|gi)p̂(gi|d).

Using the observations from above, we can now bound this score by

Scoreinter−max(d)
def
= h[M](d)p(q|d) + (1 − h[M](d))max

gi∈d
p(q|gi), (10)

which puts more weight on document-based evidence as d is estimated to
be more homogeneous. Indeed, setting h[M](d) = 1, assuming d is highly
homogeneous, we get a document-based ranking approach. On the other
hand, assuming that d is extremely heterogeneous and setting h[M](d) = 0,
we score d as in Equation 9 that depends only on d’s passages.

Note that the scoring function in Equation 10 is a generalization of past
approaches [5, 7, 6, 45] wherein a document score and the maximal score
that any of its passages is assigned are interpolated using fixed weights.

While the scoring functions from above can be instantiated using differ-
ent estimates for p(q|d) and p(q|gi), we follow the effective language modeling
approach to IR and utilize language models, as will be described in Chapter
5.

3This is reminiscent of some recent work on cluster-based retrieval [21].
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4.2 Document homogeneity

We now consider a few simple models M for estimating document d’s ho-
mogeneity, i.e., we define functions h[M] : C → [0, 1] with higher values
corresponding to (assumed) higher levels of homogeneity.

Long documents have often been considered as more heterogeneous than
shorter ones [39]. Intuitively, the chances for content heterogeneity in a
document increase as the number of the terms it contains grows. We define
document length |d| as

∑
w′ tf(w′ ∈ d) (the number of terms it contains),

and formulate a normalized length-based measure with respect to the longest
document in the corpus4

h[length](d)
def
= 1 −

log |d| − mindi∈C log |di|

maxdi∈C log |di| − mindi∈C log |di|
.

However, the length-based measure just described does not handle the
case of short heterogeneous documents. We can alternatively say that d is
more homogeneous if its term distribution is concentrated around a small
number of terms [22]. To model this idea, we use the normalized entropy of
d′s unsmoothed language model. Document entropy is defined as

Entropy(d) = −
∑

w′∈d

p̃MLE
d (w′) log p̃MLE

d (w′)

(higher values correspond to (assumed) lower levels of homogeneity). We
then normalize the measure with respect to the maximum possible entropy
of a document with the same length as that of d’s , that is, a document in
which each term is repeated exactly once (i.e., Entropy(d) = log |d|). Thus,
the entropy-based measure is

h[ent](d)
def
=

{
1 +

P
w′∈d ep MLE

d
(w′) log(ep MLE

d
(w′))

log |d| |d| > 1

1 otherwise

Both homogeneity measures just described are based on the document
as a whole and do not explicitly estimate the variety among its passages.
We can say, for example, that the more similar the passages of a document
are to each other, the more homogeneous the document is. Alternatively, a

4Note that this measure is corpus-dependent — the same document may have different
homogeneity values across different corpora. Normalization with respect to the longest
document in all tested corpora yielded similar results to those of the original proposal
defined here.
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document with passages highly similar to the document as a whole might
be considered homogeneous.

To formally capture these two homogeneity notions, we assume that the
passages of d are assigned with unique IDs, and denote the tf.idf5 vector-
space representation of text x as ~x [36] ; we can then define these notions
using

h[interPsg](d)
def
=

{
2

m(m−1)

∑
i<j;gi,gj∈d cos(~gi, ~gj) if m > 1

1 otherwise

and

h[docPsg](d)
def
=

1

m

∑

gi∈d

cos(~d, ~gi),

respectively.
Although it is clear that the document homogeneity measures h[interPsg](d)

and h[docPsg](d) are connected, they differ in their sensitivity to passages
with content strongly deviating from the content of the rest of the passages
in the document. Case in point, measure h[docPsg](d) is more conservative
than the h[interPsg](d) measure in estimation of the document homogene-
ity. For example, consider a document containing two passages g1 and g2,
such that g1 ∩ g2 = ∅. Referring to the document homogeneity measures
as defined above, we get that h[interPsg](d) = 0 (as passages’ contents are
disjoint), while h[docPsg](d) > 0 (as each passage bears some similarity to
the document as a whole).

5Modeling the latter two homogeneity notions utilizing a (normalized) version of the
KL-divergence between language models yielded retrieval performance substantially infe-
rior to that resulting from using a vector space representation with the cosine measure.
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5 Language Model Framework

In the previous chapter we showed that a few previously proposed passage-
based document ranking models, along with some new ones, can be derived
from the probabilistic model we presented. While the ranking models we
derived can be instantiated using different estimates for p(q|d) and p(q|gi),
we follow the effective language modeling approach to IR and utilize lan-
guage models to instantiate specific algorithms; specifically, we use language
models for estimating these quantities.

Following standard practice in work on language models for IR [9], we
can estimate p(q|d) and p(q|gi) using the unigram language models pd(q)
and pgi

(q) respectively (see Chapter 2, page 4). Thus, we get the following
algorithms:

The Mean Passage-Scoring algorithm assumes uniform distribution for
p̂(gi|d) and scores d by

1

m

∑

gi∈d

pgi
(q),

(see Equation 8, page 14).

The Max-Scoring Passage algorithm suggested by Liu and Croft [28]
and scores d by

max
gi∈d

pgi
(q),

(see Equation 9, page 14).

The Interpolated Max-Scoring Passage algorithm is a novel algorithm,
which scores d by

h[M](d)pd(q) + (1 − h[M](d))max
gi∈d

pgi
(q),

(see Equation 10, page 15).

Recall from Chapter 2 the standard language unigram language model
induced from text x

p[basic]
x (w1w2 · · ·wn)

def
=

n∏

j=1

p̃[basic]
x (wj)

We can use this basic language model to estimate pd(q) and pgi
(q) in our

algorithms.
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Using p
[basic]
gi (q), however, implies that every document is so heteroge-

neous that in scoring each of its passages we do not consider any information
from d, except for that in the passage itself. We would, however, want to
leverage information from d to estimate its passages’ “matches” to the query
to an extent controlled by d’s estimated homogeneity. Note that this prac-
tice does not result in the Max-Scoring Passage algorithm being equivalent
to the Interpolated Max-Scoring Passage algorithm, since the latter inte-
grates document-based information only after the maximal-scoring passage
has been determined.

Inspired by some past work [1, 15, 32, 44], we define a passage lan-
guage model that exploits information from the ambient document using
interpolation-based smoothing. In contrast to this past work, however,
wherein the interpolation is based on fixed weights that control the amount
of reliance on document statistics, we adopt the underlying concept of our
Interpolated Max-Scoring Passage algorithm (that performs interpolation at
the score level), and control this reliance by the document estimated homo-
geneity as induced by model M. We thus define the following term-based
passage language model for g ∈ d

p̃[M]
g (w)

def
= λpsg(g)p̃MLE

g (w) + λdoc(d)p̃MLE
d (w) + λC p̃

MLE
C (w), (11)

where we fix λC to some value; we then set λdoc(d) = (1 − λC)h
[M](d) and

to ensure proper probability distribution we set λpsg(g) = 1 − λC − λdoc(d).
We extend this estimate to sequences as in Chapter 2

p
[M]
g∈d(w1w2 · · ·wn)

def
=

n∏

j=1

p̃
[M]
g∈d(wj). (12)

We observe that if we set h[M](d) = 0 (i.e., considering d to be extremely
heterogeneous), we get the standard passage language model from Equation
2 (page 5), which is the language model used by Liu and Croft [28]. On
the other hand, assuming d is highly homogeneous and setting h[M](d) = 1
results in representing each of d’s passages with d’s standard language model
from Equation 2; note that in this case, the Max-Scoring Passage algorithm
reduces to a standard document-based language model retrieval approach.
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6 Passage-Based Document Representations

In this chapter we take a different view on the passage-based retrieval models
from the previous chapters. We show, using our general passage-based re-
trieval framework from Section 4, that some of our passage-based document-
ranking approaches are in fact standard document retrieval methods that
utilize a certain form of document representation. While a document repre-
sentation may be any composition of actual document parts or a synthetic
derivation from it, we confine our discussion to passage-based document
representations. In the following sections we describe how such representa-
tions can be utilized in ad-hoc document retrieval and propose a method for
deriving passage-based document representations.

6.1 Representing documents

The great majority of classic IR systems were designed for use with bibli-
ographic databases; indexing was applied to some document representation
such as title, abstract or selected keywords, rather than to the document
as a whole (a.k.a full text indexing), and document retrieval was based on
matching a document representation with a query [17]. Steep decrease in
storage costs and increase in available computation power over the years led
to the development of full-text retrieval systems that allow full-text indexing
and search. In this chapter we show that some of the algorithms presented
in Chapter 4 can be formulated in terms of ad hoc document retrieval using
passage-based representation for documents.

Document representation can be derived in a variety of ways. A represen-
tation may be based on one or more of the document’s passages or sentences,
as well as on a semantic entity such as the document title, written abstract
or table of contents. It may also be the case that a representation is not an
actual part of a document, but is synthesized from it by means of summary
[29] or any other process.

Since our interest in this thesis lies in the realm of passage-based doc-
ument retrieval we will confine our discussion to a specific type of docu-
ment representation, which is based on the document’s most representative
passages. In the following formulation, we assume that each document is
represented by a single passage rd

6. We show that using our new passage
language model from Chapter 5 in the Max-Scoring Passage algorithm is
equivalent to choosing this representative passage and performing standard

6This is akin to a summarization approach, where extracted key-phrases are used to
create a document summary [29, 4].
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document-based retrieval based on this representation. We discuss how a
single representative passage rd can be selected in Section 6.2.

We begin our discussion by referring the reader to Equation 12 (page
19), where we define a passage language model that incorporates informa-
tion from the ambient document. If, for example, we use our Max-Scoring
Passage algorithm and assign each passage a score according to the lan-
guage model from Equation 12, then our retrieval approach is equivalent
to deriving a document language model that is smoothed by the document
highest-scoring passage model as formulated here

g∗ = argmax
gj∈d

∏

qi∈q

(λpsg(gj)p̃
MLE
gj

(qi) + λdoc(d)p̃MLE
d (qi) + λC p̃

MLE
C (qi));

p
[g∗,M]
d (w)

def
= λpsg(g

∗)p̃MLE
g∗ (w) + λdoc(d)p̃MLE

d (w) + λC p̃
MLE
C (w)

The equation above implies that the Max-Scoring Passage algorithm
can be viewed as a two-step retrieval process. At the first step we find the
highest-scoring passage of the document, and at the second step we score
the document based on a representation that depends on this passage.

If we were to design an analogous retrieval process wherein there is no
dependency on the query at the first step, we could define our retrieval pro-
cess in the following manner. First, we select a passage from the document
according to some criteria (which will be discussed in the next section) and
base our document representation on this passage. Then, we construct a
language model based on this representation.

p
[rd,M]
d (w)

def
= λpsg(rd)p̃

MLE
rd

(w) + λdoc(d)p̃MLE
d (w) + λC p̃

MLE
C (w) (13)

The principal difference between the Max-Scoring Passage algorithm and
the retrieval process just described is that the former selects the passage that
can potentially serve as a basis for a document representation based on a
query (refer back to Section 4.1), while the latter assumes that only a single
passage, rd, can represent a document, i.e.

p̂(gi|d)
def
=

{
1 if gi is rd

0 otherwise

Since passage-based retrieval may significantly increase the cost of query
evaluation [19], using query-independent document representations may ame-
liorate this problem. As opposed to finding the highest scoring passage of
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each document for each query, representations are calculated only once and
stored for use with all subsequent queries.

6.2 Passage selection for document representation

We will now discuss a method for selecting a passage rd for deriving a query-
independent passage-based document representation. Although the number
of ways to derive a representation is virtually unlimited, we will focus on a
single method, which mirrors one of the document homogeneity measures
presented in Section 4.2.

A natural way to represent a document is by its summary or abstract, as
indeed has been done in the classical information retrieval literature [4, 29].
As we are interested in introducing passages as means of representation, our
aim is to find a document passage that would best fit the role of document
summary or abstract.

Summary is usually defined as a process of reducing document complex-
ity and length, while retaining some of the essential original qualities [20].
A good summary should facilitate quick and accurate identification of the
original topic [29, 20]. Accordingly, we seek to represent an original (docu-
ment) by a summary (passage) that bears the closest resemblance to it. To
formally capture this notion we use a tf.idf vector-space representation [36]
for both the document and all its passages and denote this represenation of
text x as ~x. We choose the passage gi for which the cosine measure cos(~d, ~gi)
is maximized, to be the document representation rd

rd
def
= {gi ∈ d : ∀j cos(~d, ~gi) ≥ cos(~d, ~gj)}

This is reminiscent of h[docPsg] (see Section 4.2) — the document ho-
mogeneity measure where homogeneity is determined by the average cosine
similarity of all the document’s passages with the document as a whole.
Indeed, the process of passage selection for document representation and
document homogeneity are interconnected. Intuitively, the more homoge-
neous the document is, the higher is the probability that each of its passages
may serve as a basis for a good document representation. Consider a highly
homogeneous document, which is simply a concatenation of several copies
of the same passage, as an example. In such a document, according to the
definition of rd above, each passage may serve as a document representa-
tion. On the other hand, for a heterogeneous document, where there is a
large variance among passages’ contents, a single passage that summarizes
the ideas presented in other passages (such as an abstract), is a most likely
candidate to become the basis for an effective document representation.
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Once a document representation rd has been selected, we can utilize it to
perform passage-representation based document retrieval, i.e., we can assign
a query-similarity score to a document based on a query-similarity score of
its selected representation. Specifically, we choose to score a document in
response to a query based on a unigram language model (see Chapter 2), as
defined by Equation 13 (page 21)

rd
def
= {gi ∈ d : ∀j cos(~d, ~gi) ≥ cos(~d, ~gj)};

p
[rd,M]
d (w)

def
= λpsg(rd)p̃

MLE
rd

(w) + λdoc(d)p̃MLE
d (w) + λC p̃

MLE
C (w);

p
[rd,M]
d (w1w2 · · ·wn)

def
=

n∏

j=1

p
[rd,M]
d (wj).

We report the experimental results obtained by using this model in Chap-
ter 7.
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7 Evaluation

In what follows we present an experimental evaluation designed to explore
the relative merits (or lack thereof) in using our proposed passage language
model from Equation 12 (page 19) and the different passage-based ranking
algorithms proposed in this thesis.

The rest of this chapter is organized as follows. In Section 7.1 we review
the specific algorithm implementations we use in our experiments. In Section
7.2 we discuss the experimental setup. In Sections 7.3, 7.4, 7.5 and 7.6 we
present detailed results for various algorithms. In Section 7.7 we summarize
our experimental results and draw conclusions.

7.1 Algorithms overview

In this section we give a brief overview of the algorithms that were imple-
mented for our experiments. All algorithm instantiations are based on the
derivations made in Chapters 4, 5 and 6. All our algorithms are designed for
document retrieval, and most of them rely to some extent on passage-based
information. Whenever we combine document and passage statistics (as in
Max-Scoring Passage, Interpolated Max-Scoring Passage or Representation-
Based Scoring algorithms) for assigning a score to a document, we use our
homogeneity measures (refer back to Section 4.2 for survey of measures used)
for balancing the two.

We test the following algorithms for passage-based document retrieval:

• Mean Passage-Scoring algorithm — assigns a score to a document
by the mean query-similarity score of its constituent passages. (See
Equation 8, page 14.)

• Max-Scoring Passage algorithm — assigns a score to a document by
the maximal query-similarity score of any of its passages. (See Equa-
tion 9, page 14.)

• Interpolated Max-Scoring Passage algorithm — assigns a score to a
document by interpolating the query-similarity score of the document
and the score derived from the Max-Scoring Passage algorithm. (See
Equation 10, page 15.)

• Representation-Based Scoring algorithm — uses a single passage as
a basis for document representation; assigns a score to a document
by the query-similarity score of its passage-based representation. (See
Equation 13, page 21.)
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We instantiate each of the algorithms using document and passage lan-
guage models (see Section 2 for details). Document language model is the

basic language model p
[basic]
d (·) (Equation 1, page 5); passage language model

is either the basic passage language model p
[basic]
g (·) (Equation 1, page 5) or

our homogeneity-based passage language model p
[M]
g (·) (Equation 11, page

19). The different algorithm instantiations are summarized in Figure 1 be-
low.

25



Abbreviation Language Model Description

BaseDoc p
[basic]
d (·) Standard language-model based document re-

trieval.

MaxPsg p
[basic]
g (·) Max-Scoring Passage algorithm using a standard

passage language model (Liu and Croft [28]).

MeanPsg p
[basic]
g (·) Mean Passage-Scoring algorithm using standard

passage language model.

MSP [M] p
[M]
g (·) Max-Scoring Passage algorithm using our

homogeneity-based passage language model.

RelDoc p
[basic]
d (·) Standard document-based relevance model [25].

RelPsg p
[basic]
g (·) Passage-based relevance model (Liu and Croft

[28]).

RelPsg[M] p
[M]
g (·) Passage-based relevance model, which utilizes our

homogeneity-based language model.

IMSP [M][basic] p
[basic]
g (·), p

[basic]
d (·) Interpolated Max-Scoring Passage algorithm,

wherein scores obtained by BaseDoc and
MaxPsg are interpolated using homogeneity
measures (see Equation 10).

IMSP [M][M] p
[M]
g (·), p

[basic]
d (·) Interpolated Max-Scoring Passage algorithm,

wherein scores obtained by BaseDoc and
MSP [M] are interpolated using homogeneity
measures. (See Equation 10).

Rep[M] p
[M]
g (·) Representation-Based Scoring algorithm, wherein

score of a document is determined by the score of
its representation, as in Equation 13, page 21.

Figure 1: Summary of all the evaluated algorithm instantiations.
Each instantiation is represented by an abbreviated name. For each instanti-
ation the following information is provided: language model(s) it uses and a
brief textual description.
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7.2 Experimental setup

Corpora We conducted our experiments on the following four TREC cor-
pora (we considered only queries in the specified ranges with at least one
relevant document):

corpus # of docs avg. doc. length queries disk(s)
FR12 45,820 935 51-100 1,2
LA+FR45 187,526 317 401-450 4,5
WSJ 173,252 263 151-200 1-2
AP89 84,678 264 1-50 1

We note that FR12, which was used in work on passage-based docu-
ment retrieval [7, 28], and LA+FR45, which is known to be a very hard
benchmark with TREC8 queries (401-450) [14, 23], are considered to con-
tain highly heterogeneous documents, while documents in AP89 and WSJ
are considered to be more homogeneous.

We used the Lemur7 toolkit to run our experiments. We applied basic
tokenization and Porter stemming, and removed INQUERY stopwords [3].
We used the titles of TREC topics as queries.

Evaluation metrics To evaluate retrieval performance, we use the fol-
lowing metrics: mean average (non-interpolated) precision at 1000 (MAP),
precision at 5 documents (p@5) and precision at 10 documents (p@10).
Mean average precision is a widely accepted metric for the evaluation of the
general quality of retrieval methods [43]; p@5 and p@10 metrics measure
the ability of retrieval methods to position relevant documents at the very
high ranks of the retrieved results. We determine statistically significant
differences in performance using the two-tailed Wilcoxon test at the 95%
confidence level.

Passages While there are several passage types we can choose from (refer
back to Section 3.1.1), our focus here is on the general validity of our retrieval
algorithms and language-model induction techniques. Therefore, we use
half overlapping fixed-length windows of sizes 150, 50 and 25 as passages
and mark them prior to retrieval time. Such passages are computationally
convenient to use and were shown to be quite effective for document retrieval
[7], specifically in the language model framework when compared to other
passage types [28].

7www.lemurproject.org
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Baselines In most of our experiments we use the following reference com-
parisons for our algorithms. The first is a standard language-model-based

document retrieval, denoted BaseDoc, wherein d is scored by p
[basic]
d (q). The

second is the Max-Scoring Passage algorithm, implemented using the stan-

dard passage language model p
[basic]
g (q), which we denote as MaxPsg. (The

latter was proposed by Liu and Croft [28]). Note that both references are ap-
plications of the query-likelihood approach, either for documents (BaseDoc)
or for passages (MaxPsg) (see Section 2.1 for details).

Parameter tuning All tested algorithm implementations use a single free
parameter λC , which controls the amount of reliance on corpus-based statis-
tics for smoothing.

To establish a fair comparison of our algorithms’ implementations with
the basic (unsmoothed) passage and document language models they utilize,
we choose the value of λC from {0.1, . . . , 0.9} for which the MAP performance
of both MaxPsg and BaseDoc (our reference comparisons) is nearly opti-
mal; the performance results for using different values of λC for these two
algoritms on all tested corpora are presented in Figure 2. (Passage size is
150. Similar trends exist for passage sizes 50 and 25, however they were not
plotted to avoid cluttering the graphs.) As can be seen in Figure 2, results
for λC = 0.5 are near optimal in most cases both for BaseDoc and MaxPsg;
hence we will set the value of λC to 0.5 in all succeeding experiments.

FR12 LA+FR45 WSJ AP89

 10

 15

 20

 25

 30

 0.9 0.7 0.5 0.3 0.1

M
A

P
 

lambda_col

BaseDoc
MaxPsg- PsgSize 150

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 0.9 0.7 0.5 0.3 0.1

M
A

P
 

lambda_col

BaseDoc
MaxPsg- PsgSize 150

 22

 23

 24

 25

 26

 27

 28

 29

 30

 0.9 0.7 0.5 0.3 0.1

M
A

P
 

lambda_col

BaseDoc
MaxPsg- PsgSize 150

 15

 16

 17

 18

 19

 20

 21

 0.9 0.7 0.5 0.3 0.1

M
A

P
 

lambda_col

BaseDoc
MaxPsg- PsgSize 150

Figure 2: MAP performance numbers of BaseDoc and MaxPsg.
BaseDoc and MaxPsg are represented by thin and thick lines respectively.
Performance is shown for passage size 150 when setting λC to {0.1, . . . , 0.9}.
Note: figures are not to the same scale.

As a note aside, we must mention that while setting λC to a fixed value re-
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sults in a fair comparison between the algorithms, it also results in MaxPsg

and BaseDoc utilizing Jelinek-Mercer smoothing (refer back to Chapter 2),
which is somewhat less effective than Dirichlet smoothing when using short
queries [46]. However, having our algorithms incorporate the length-based
Dirichlet smoothing effect [46], calls for a somewhat different formulation
due to issues related to the normalization of the h[M] function and the
statistical interpretation of the prior. We compare, however, the MaxPsg

and BaseDoc algorithms with Dirichlet smoothing to our Interpolated Max-
Scoring Passage algorithm in Section 7.5.
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7.3 The Mean Passage-Scoring algorithm

In our first set of experiments we consider the Mean Passage-Scoring algo-
rithm (see Equation 6, page 14), wherein we use a weighted sum of query-
similarity passage scores to rank a document. In lack of any information
regarding the relative importance of passages we assume they have an equal
importance for scoring purposes, and score a document by the mean query-
similarity score of its constituent passages as in Equation 8 (page 14); thus,
we get the Mean Passage-Scoring algorithm (refer to Chapter 5).

In our experiments we use the standard language model p
[basic]
g (·) (see

Equation 1, page 5). This means that for creating a language model we
treat each passage as a separate piece of text, and smooth it’s statistics only
with the collection statistics. We use Jelinek-Mercer smoothing [46] and set
λC = 0.5, as described in Section 7.2; we compare the resultant performance
to that of BaseDoc and MaxPsg — our reference comparisons (see Section
7.2).

The performance numbers in Figure 3 clearly indicate the inferiority of
the proposed Mean Passage-Scoring algorithm to using both standard docu-
ment language model and the Max-Scoring Passage algorithm with standard
passage language model; the performance numbers for all evaluation metrics
are lower than those of the reference comparisons for all corpora (up to two
times and more — see the results for FR12 and WSJ).

These results resonate with the hypothesis (see Section 4.1) that retrieval
performance can be enhanced by a detection of a single relevant passage per
document rather than by an utilization of all document passages. This is fur-
ther reinforced by the fact that Max-Scoring Passage algorithm (MaxPsg)
outperforms the document retrieval (BaseDoc) on some corpora that are
considered heterogeneous (see the results for FR12 corpus, for example).
Accordingly, we next move to the evaluation of our implementation of the
Max-Scoring Passage algorithm, which uses our homogeneity-based passage
language model.
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FR12
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.00 19.05 13.33 22.00 19.05 13.33 22.00 19.05 13.33

MaxPsg 28.44 19.05 14.76 30.14 d 19.05 14.76 18.10 13.33 13.81

MeanPsg 13.89d
p 10.48d

p 9.52p 13.38d
p 7.62d

p 6.67d
p 9.31d

p 5.71d 6.19d
p

LA+FR45
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.69 30.64 26.38 22.69 30.64 26.38 22.69 30.64 26.38

MaxPsg 21.93 27.66 25.53 21.68 28.51 25.74 21.71 29.36 26.81

MeanPsg 20.22d
p 25.96d 22.98d 16.26d

p 19.15d
p 18.09d

p 14.64d
p 17.87d

p 17.23d
p

WSJ
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 28.38 42.40 39.60 28.38 42.40 39.60 28.38 42.40 39.60

MaxPsg 28.80 46.00 41.80 26.10d 44.00 40.40 24.95d 40.80 37.20

MeanPsg 20.42d
p 32.00d

p 32.60d
p 14.03d

p 21.20d
p 19.60d

p 10.72d
p 14.40d

p 14.20d
p

AP89
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 19.98 25.65 24.13 19.98 25.65 24.13 19.98 25.65 24.13

MaxPsg 18.82d 27.83 23.04 17.71d 26.09 22.39 16.34d 20.43 16.52d

MeanPsg 17.55d
p 21.74p 22.39 14.27d

p 14.78d
p 13.48d

p 11.99d
p 12.17d

p 10.87d
p

Figure 3: Performance numbers of the Mean Passage-Scoring algorithm
(MeanPsg).
Performance numbers for retrieval using basic document language model
(BaseDoc) and the Max-Scoring Passage algorithm with basic passage lan-
guage model (MaxPsg), are presented for reference. Boldface indicates the
best result per column; shadow marks the best performance in a table with
respect to an evaluation measure; d and p mark statistically significant differ-
ences with BaseDoc and MaxPsg respectively.
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7.4 Our passage language model

In this section we explore the benefits (or lack thereof) in using our homogeneity-

based passage language model from Equation 12 (page 19), p
[M]
g (·) in the

Max-Scoring Passage algorithm and in constructing and utilizing passage-
based relevance models [28].

7.4.1 The Max-Scoring Passage algorithm

We use MSP [M] to denote the implementation of Max-Scoring Passage
with our homogeneity-based language model, and compare its performance
to that obtained by our reference comparisons BaseDoc and MaxPsg.

Recall our observation from Chapter 5 that fixing h[M](d) to either 0 or
1 in Equation 11 (page 19) (i.e., assuming d is either highly heterogeneous
or highly homogeneous) and using the Max-Scoring Passage algorithm with
the resultant passage language model amounts to ranking by MaxPsg and
BaseDoc respectively. Thus, we get that our two reference comparisons
are in fact specific instantiations of Max-Scoring Passage with degenerated
homogeneity measures.

We now turn to Figure 4, in which we present the performance numbers
for the above mentioned methods.

Our first observation in Figure 4 is that the Max-Scoring Passage al-
gorithm is consistently more effective when utilizing our new passage lan-

guage model p
[M]
g (·) than when using the standard passage language model

p
[basic]
g (·). We can observe the following for the 48 relevant comparisons (4

corpora × 4 homogeneity measures × 3 passage sizes)

• For the MAP evaluation metric, MSP [M] is superior to MaxPsg in
about 96% of the cases

• For the p@5 evaluation metric, MSP [M] is superior (or equal) to
MaxPsg in about 65% of the cases

• For the p@10 evaluation metric, MSP [M] is superior to MaxPsg in
about 80% of the cases

In many cases, the performance differences are also statistically signifi-
cant. (See the AP89 and the WSJ cases, for example.)

Another observation we make based on Figure 4 is that the best per-
forming document homogeneity measures for inducing our passage model
are length — demonstrating its correlation with heterogeneity [39] — and
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docPsg, which measures the similarity between a document and its passages,
and is thus directly related to the balance of document-based and passage-
based information that we want to control in inducing the passage language
model.

This observation on document homogeneity measures performance is fur-
ther strengthened by the following significance tests between the MAP per-
formance results obtained using different homogeneity measures: (i) both
MSP [length] and MSP [docPsg] performances are better to a statistically
significant degree than that of MSP [interPsg] for FR12 (passage sizes 150
and 50), (ii) MSP [length] performance is better to a statistically significant
degree than that of MSP [interPsg] and MSP [ent], and MSP [docPsg] per-
formance is better to a statistically significant degree than that of MSP [ent]
for LA+FR45 (passage size 50), (iii) both MSP [length] and MSP [docPsg]
performances are better to a statistically significant degree than that of
MSP [interPsg] and MSP [ent] for WSJ (passage size 50), and (iv) MSP [length]
performance is better to a statistically significant degree than that of MSP [ent],
and MSP [docPsg] performance is better to a statistically significant degree
than that of MSP [interPsg] and MSP [ent] for AP89 (passage size 150).

We can also see in Figure 4 that very short passages (of size 25) are the
worst choice among the three we consider, which is in line with some previous
results [7, 28]. However, using our passage language model that incorporates
document statistics ameliorates the performance decay for small passage size
to some degree when compared to standard passage language model. (This is
further analyzed in Section 7.4.2). Among the tested passage sizes, passages
of size 50 provide the optimal performance.

Our best performing methods, MSP [length] and MSP [docPsg], are
both superior in 75% of the relevant comparisons (4 corpora × 3 evalua-
tion metrics) to the standard document-based method, BaseDoc, for pas-
sage size 50; sometimes (e.g., on FR12), the differences are also statistically
significant.

Therefore, perhaps the most important conclusion we can draw from
Figure 4 is that using our passage language model, which integrates passage
and document information, in the Max-Scoring Passage algorithm results in
performance that is in many times better than that resulting from the use
of either the standard passage language model or the standard document
language model. (The performance numbers in the FR12 and LA+FR45
tables nicely illustrate this conclusion: MSP [length] is superior in most of
the relevant comparisons to both MaxPsg and BaseDoc, while MaxPsg is
superior to BaseDoc on FR12, and inferior to BaseDoc on LA+FR45.)
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FR12
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.00 19.05 13.33 22.00 19.05 13.33 22.00 19.05 13.33

MaxPsg 28.44 19.05 14.76 30.14d 19.05 14.76 18.10 13.33 13.81

MSP[length] 29.56d 18.10 15.71 31.83 d
p 20.00 15.71 26.87p 21.90 p 16.19

MSP[ent] 29.25d 19.05 16.19 30.12d 18.10 16.19 25.08 20.00 16.67

MSP[docPsg] 29.32d 19.05 16.19 31.01d 19.05 15.71 25.32 18.10 12.86
MSP[interPsg] 29.05d 18.10 15.71 30.70d 18.10 16.19 25.37 18.10 12.38

LA+FR45
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.69 30.64 26.38 22.69 30.64 26.38 22.69 30.64 26.38
MaxPsg 21.93 27.66 25.53 21.68 28.51 25.74 21.71 29.36 26.81

MSP[length] 23.05p 28.94 27.45 23.56 p 28.94 25.96 23.21 25.53 25.11
MSP[ent] 22.20 27.66 26.17 21.83 29.79 25.96 21.87 28.94 25.74

MSP[docPsg] 23.16p 29.36 27.87 22.99 26.38 25.53 21.75 26.38 24.26
MSP[interPsg] 22.75p 27.66 26.60 21.92 26.81 25.32 21.04 28.09 24.04p

WSJ
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 28.38 42.40 39.60 28.38 42.40 39.60 28.38 42.40 39.60

MaxPsg 28.80 46.00 41.80 26.10d 44.00 40.40 24.95d 40.80 37.20

MSP[length] 29.25d 44.40 43.00d 29.00p 46.00 44.80 d
p 27.91p 44.00 43.40p

MSP[ent] 29.32 p 44.00 41.60 27.86p 46.00 41.80 26.49d
p 41.60 39.60

MSP[docPsg] 29.13d 44.40 42.60d 29.15p 45.60 44.80 d
p 27.80p 42.00 42.40p

MSP[interPsg] 29.20d 45.20 42.40d 28.16p 45.20 43.20p 26.83d
p 42.00 38.40

AP89
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 19.98 25.65 24.13 19.98 25.65 24.13 19.98 25.65 24.13

MaxPsg 18.82d 27.83 23.04 17.71d 26.09 22.39 16.34d 20.43 16.52d

MSP[length] 19.32p 27.83 23.70 18.74p 26.09 24.57 17.79d
p 24.78p 20.87p

MSP[ent] 19.05p 27.83 22.83 18.24d
p 26.09 22.61 17.35d

p 20.87 19.57d
p

MSP[docPsg] 19.75p 26.09 23.26 19.06p 29.13 24.57 17.73d
p 24.78p 21.96p

MSP[interPsg] 19.47p 25.65 23.70 18.39d
p 24.78 23.91 17.42d

p 22.61 19.35d
p

Figure 4: Performance numbers of the Max-Scoring Passage algorithm
(MSP [M]).
Max-Scoring Passage algorithm is implemented either with the basic passage
language model, p

[basic]
g (·), from Equation 2 (as in Liu and Croft [28]) — de-

noted MaxPsg, or with our passage language model, p
[M]
g (·), with homogeneity

model M — denoted MSP [M]. Document-based language-model retrieval
performance is presented for reference (BaseDoc). Boldface indicates the best
result per column; shadow marks the best performance in a table with respect
to an evaluation measure; d and p mark statistically significant differences with
BaseDoc and MaxPsg respectively.
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7.4.2 Further analysis

Effect of passage size on retrieval performance It is clear from Figure
4 that the selection of passage size has a considerable effect on retrieval
performance. Similar effects were also reported in previous work on passage
retrieval [28, 7, 18]. In general, we note that performance obtained for
passages of size 50 is nearly optimal (with respect to other passage sizes we
have tested) in almost all of the cases when using our passage language model
(see, for example, the results for FR12 and WSJ). The retrieval performance
is at its worst both for our passage language model and for the basic passage
language model when passages of size 25 are used. However, as mentioned
above, performance decay tends to be ameliorated to some degree when our

passage language model, p
[M]
g (·), is used. The results for FR12 and WSJ

nicely illustrate this tendency. For FR12, when the basic passage language
model is used, the decline between the best (for passage size 50) and the
worst (for passage size 25) MAP performance is about 40%; by comparison,
when our passage language model is used, the decline between the best
and the worst MAP performance (as in the case for MSP [length]) is only
about 15%. For WSJ, the decline between the best and the worst MAP
performance is 15% and 5%, when using either standard language model,

p
[basic]
g (·), or our language model, p

[M]
g (·), respectively.

This ameliorating effect could stem from the incorporation of document
statistics into our passage model, which restricts to some degree the per-
formance deviation caused by varying the passage sizes. It must be noted,
however, that since only three different passage sizes are used, there is not
enough data to make a conclusive judgment on the exact role that document
statistics might play in the selection of passage size.

Effect of homogeneity measures on retrieval performance We de-
rived the passage language model in Equation 11 (page 19) by controlling the
reliance on document versus passage information using homogeneity measure
M. We now examine the alternative of fixing the balance between the two,
making the assumption that all documents in the corpus are homogeneous to
the same extent; specifically we set h[M](d) to a fixed value in {0, 0.2, . . . , 1}
for all d ∈ C. Note that doing so results in fixing λdoc(d) in Equation 11
(page 19) to a value in {0, 0.1, . . . , 0.5} (since λdoc(d) = (1 − λC)h

[M](d)
and λC = 0.5), which echoes some past work [1, 15, 32, 44]. Furthermore,
observe that setting λdoc(d) to 0 or 0.5 and using the Max-Scoring Pas-
sage algorithm amounts to using the reference comparisons MaxPsg and
BaseDoc respectively. (Refer to Chapter 5.)
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Figure 5 depicts the MAP performance curve of the Max-Scoring Passage
algorithm (with passage sizes set to 150, 50 and 25) when varying λdoc(d).
We also plot for comparison the performance of our best performing meth-
ods MSP [docPsg] and MSP [length], with thick and thin horizontal lines
respectively.

We can see in Figure 5 that using the homogeneity measures with passage
sizes 150 and 50 helps us to avoid a relatively poor performance obtained
by a bad choice of a constant λdoc(d) as is the case for AP89. (Note that
for FR12 and WSJ the worst choice amounts to using BaseDoc, while for
LA+FR45 and AP89 it amounts to using MaxPsg.) Furthermore, for the
other three corpora, using our homogeneity measure results in near (or even
better than) optimal performance with respect to a fixed λdoc(d). It is
also important to note that while the performance differences are small in
absolute terms, many of them are statistically significant.

• For passage size 150, MSP [length]’s performance is better to a statis-
tically significant degree than that resulting from setting λdoc(d) = 0
for LA+FR45 and AP89, and λdoc(d) = 0.5 for FR12 and WSJ.
MSP [docPsg] is better to a statistically significant degree than us-
ing λdoc(d) ∈ {0.1, 0.2} for AP89, and to λdoc(d) = 0.1 for LA+FR45.

• For passage size 50, MSP [length]’s performance is better to a statisti-
cally significant degree than that resulting from setting: (i) λdoc(d) = 0
for all corpora, (ii) λdoc(d) = 0.5 for FR12, (iii) λdoc(d) = 0.1 for AP89,
FR12 and WSJ, and (iv) λdoc(d) = 0.1 for FR12. MSP [docPsg]’s
performance is better to a statistically significant degree than that re-
sulting from setting λdoc(d) = 0 for WSJ and AP89, λdoc(d) = 0.5 for
FR12, and λdocd = 0.1 for AP89 and WSJ.

We can also see in Figure 5 that when small passage size (25) is se-
lected, values of λdoc(d) that provide the best performance tend to be closer
to 0.5 — i.e., assign higher weight to document statistics in the language
model in Equation 11 (page 19). (Note that setting λdoc(d) = 0.5 results
in BaseDoc algorithm). This effect can be observed when comparing plots
for different passage sizes in Figure 5. In plots depicting performance for
FR12, LA+FR45 and WSJ for passage size 25, best performance is attained
by setting h[M](d) = 0.4; on the other hand in plots depicting performance
for FR12, LA+FR45 and WSJ for passage size 150, best performance is
attained by setting h[M](d) = 0.2, h[M](d) = 0.3 and h[M](d) = 0.2 respec-
tively. Due to the fact that the optimal values of λdoc(d) are close to 0.5 in
the case of passages of size 25, homogeneity models performance is not as
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good as for larger passage sizes, however they still sometimes provide near
optimal performance with respect to fixed λdoc(d) (as in FR12), or at least
help to avoid a degraded performance caused by selecting a low fixed value
for λdoc(d)(as in LA+FR45).
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Figure 5: The Max-Scoring Passage algorithm’s MAP performance when
either setting h[M](d) to fixed values or using homogeneity measures.
The performance is shown when either setting λdoc(d) (from Equation 11) to
a value in {0, 0.1, . . . , 0.5} for all d ∈ C (note that 0 and 0.5 correspond to
MaxPsg and BaseDoc respectively), or using the homogeneity measures length

(thin horizontal line) and docPsg (thick horizontal line) instead, although these
measures do not incorporate free parameters. (Lines are used for convenience
of comparison.) Note: figures are not to the same scale.
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7.4.3 Passage-based relevance models

Liu and Croft [28] suggest several methods for constructing and utilizing
passage-based relevance models [25] for document retrieval. Their most effec-
tive method is to construct a relevance model R (see Section 2.2) using only

passages, and then score each document d ∈ C by mingi∈dD
(
p̃R(·)

∣∣∣
∣∣∣ p̃

[basic]
gi (·)

)

(see Equation 13, page 21). Conceptually, this algorithm is a special case of
the Max-Scoring Passage algorithm, wherein q is replaced with R.

We now compare their implementation, denoted RelPsg, which utilizes

the standard passage language model p
[basic]
g (·), to an implementation, de-

noted RelPsg[M], which utilizes our new passage language model p
[M]
g (·).

We also use the standard document-based relevance model [25], denoted
RelDoc, as a reference comparison.

We optimize the performance of each of our reference comparisons (RelPsg

and RelDoc) with respect to the number of top-retrieved elements (i.e., pas-
sages or documents) and the number of terms used for constructing the rel-
evance models; specifically, we select these parameters’ values from the set
{25, 50, 75, 100, 250, 500} – i.e., total of 36 parameters settings — so as to
optimize MAP performance.

We set λC = 0.5 (as in Section 7.2) except for estimating top-retrieved el-
ements’ language models for constructing R, wherein we set λC = 0.2 follow-
ing previous observations [25]. To set parameters values for our RelPsg[M]
algorithms we use those chosen for the RelPsg reference comparison. Thus,
our RelPsg[M] algorithms performance is not necessarily the optimal one
they can potentially achieve. We also point out that the performance of the
document-based relevance model RelDoc might be further improved by em-
ploying Dirichlet smoothing rather than Jelinek-Mercer smoothing; however,
having all tested language models employ the same smoothing technique is
crucial for studying their relative effectiveness. (Refer back to the discussion
at the end of Section 7.2.)

We present the performance results for the different relevance models
in Figure 6. We see in Figure 6 that in a vast majority of the relevant
comparisons, using our passage language model results in relevance models
(RelPsg[M]) that outperform both the one utilizing the previously sug-
gested basic passage model (RelPsg), and the document-based relevance
model (RelDoc). (Observe, for example, that shadows that mark the best
performance in a table per evaluation metric appear almost exclusively in
RelPsg[M] rows.) Furthermore, in many of the comparisons, the perfor-
mance differences are also statistically significant, especially for passages of
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size 50. Among the outstanding performance results for passage size 50,
are the results attained by RelPsg[docPsg] for FR12 and WSJ, where it
outperforms (in terms of MAP) the best-performing of the two baselines,
RelDoc and RelPsg, by 9.3% and 9.7%, respectively.

40



FR12
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

RelDoc 10.70 10.48 9.05 10.70 10.48 9.05 10.70 10.48 9.05

RelPsg 31.71d 17.14 14.29d 31.06d 19.05 16.19d 22.42d 13.33 14.29

RelPsg[length] 28.00d 19.05 14.76d 30.74d 23.81 d 18.10 d 28.89d 21.90d
p 17.62d

RelPsg[ent] 29.36d 20.00d 14.76d 33.41d 22.86d 18.10 d 31.55d
p 20.00 17.14d

RelPsg[docPsg] 26.86d 18.10 15.71d 34.23 d 22.86d 18.10 d 28.44d 20.95 17.14d

RelPsg[interPsg] 29.32d 19.05d 14.76d 33.08d 23.81 d 17.62d 22.47d 16.19 15.24d

LA+FR45
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

RelDoc 20.69 28.09 23.83 20.69 28.09 23.83 20.69 28.09 23.83
RelPsg 22.44 28.94 25.96 21.87 29.79 24.68 20.26 28.09 22.98

RelPsg[length] 21.77p 31.91 26.60 23.30 d
p 33.19 25.32 22.02d

p 30.64 24.47

RelPsg[ent] 22.30 29.79 26.60 23.05 32.77 25.53 22.23p 30.21 24.26

RelPsg[docPsg] 20.35p 30.64 25.11 22.79d
p 34.04 p 25.74 21.40d

p 29.36 24.68
RelPsg[interPsg] 21.62 30.21 25.96 23.01 33.19p 25.32 22.08 30.64 24.68

WSJ
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

RelDoc 33.85 48.80 48.40 33.85 48.80 48.40 33.85 48.80 48.40

RelPsg 34.46 50.40 47.20 33.97 47.20 45.00 30.95 43.60 41.60d

RelPsg[length] 35.40d 54.40 p 50.00 37.53d
p 49.60 49.00p 35.63p 49.20 47.20p

RelPsg[ent] 34.90d 52.00 48.20 36.86d
p 49.60 46.80 34.10p 48.80 46.40p

RelPsg[docPsg] 35.90d 52.40 50.20 37.60 d
p 49.60 50.20 p 35.89p 48.00 47.80p

RelPsg[interPsg] 35.25d 52.40 50.00 37.47d
p 50.00p 47.20 34.66p 49.60p 45.00p

AP89
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

RelDoc 25.56 31.30 28.48 25.56 31.30 28.48 25.56 31.30 28.48

RelPsg 24.08 35.65 29.78 22.18 30.43 25.87 20.45d 25.65 22.83d

RelPsg[length] 25.05 33.48 30.43 24.30p 33.48 30.00p 22.33d
p 30.87p 27.61p

RelPsg[ent] 24.54 34.35 30.00 23.68p 35.22p 29.35 21.67d
p 31.30 26.09p

RelPsg[docPsg] 25.73 32.61 29.78 25.13p 34.78 31.30 p 23.04d
p 32.61p 28.26p

RelPsg[interPsg] 25.24 31.74 30.43 24.10p 33.48 29.13 22.07d
p 31.30p 26.52p

Figure 6: Performance numbers of passage-based relevance model.
Either the originally suggested by Liu and Croft [28] basic passage lan-

guage model, p
[basic]
g (·), (RelPsg) or our new passage language model, p

[M]
g (·),

(RelPsg[M]) is used for passage-based relevance model instantiation. Document-
based relevance-model performance is presented for reference (RelDoc). Best
result in a column is boldfaced, and best result in a table (per evaluation mea-
sure) is marked with a shadow; significant differences with RelDoc and RelPsg

are marked with d and p respectively.
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7.4.4 Conclusions

In this section we used our homogeneity-based language model p
[M]
g (·) to

instantiate the Max-Scoring Passage algorithm (MSP [M]). Using our lan-
guage model in Max-Scoring Passage algorithm resulted in (for many cases
statistically significant) performance improvements over our reference com-
parisons BaseDoc and MaxPsg. We also compared the effectiveness of set-
ting h[M](d) for all the documents to a fixed value (as is done in some previ-
ous work [1, 15, 32, 44]) with that of setting h[M](d) according to document
homogeneity (as in our homogeneity-based passage language model). We
showed that for larger passage sizes, using our homogeneity-based passage
language model results in near (or even better than) optimal performance
with respect to any fixed weight.

In addition, we used our language model p
[M]
g (·) to construct a new

relevance model [25]. Document retrieval using our new relevance model
(RelPsg[M]) demonstrated (in many cases statistically significant) perfor-
mance improvement over retrieval using both a document-based relevance
model [25] and a passage-based relevance model constructed using a standard

passage language model p
[basic]
g (·) [28] (see Figure 6).
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7.5 The Interpolated Max-Scoring Passage algorithm

The Interpolated Max-Scoring Passage algorithm scores document d by
the interpolation of the standard document-based language model score
(BaseDoc) with the score derived from the Max-Scoring Passage algorithm
(refer to Section 5). We experimented with two versions of the Interpolated
Max-Scoring Passage algorithm.

In the first version, which focuses solely on the score integration, the
standard document and passage language models from Equation 2 (page
5) are used. Thus, the Max-Scoring Passage implementation in this case
is Liu and Croft’s algorithm [28] — denoted MaxPsg in Section 7.2. The
second version interpolates the standard document language model score
(BaseDoc) and the score assigned by the Max-Scoring Passage algorithm
when implemented using our passage language model (see Equation 11, page
19).

Thus, while the first version of the algorithm is designed to test whether
performances of standard document or passage language models (BaseDoc

and MaxPsg, respectively) can be improved by means of score interpolation,
the second version explores whether score interpolation might bring further
improvements over performance gains already obtained by using the Max-
Scoring Passage algorithm with the new passage language model (refer to
the results for MSP [M] in Section 7.4.1).

In both Interpolated Max-Scoring Passage algorithm implementations
homogeneity measure M controls the reliance on document-based versus
passage-based scores. (See Equation 10, page 15). We denote the algorithm
versions IMSP [M][basic], and IMSP [M][M], respectively.

7.5.1 The IMSP [M][basic] algorithm

Figure 7 depicts the performance results of the Interpolated Max-Scoring
Passage algorithms, denoted IMSP [M][basic]. To smooth document and
passage language models, we use either Jelinek-Mercer smoothing and set
λC = 0.5 (as in Section 7.2), or Bayesian smoothing with Diricihlet priors
and set µ = 1000 (see Section 2), following some previous work [46].

We see in Figure 7 that our Interpolated Max-Scoring Passage algo-
rithm is in most cases superior to using the Max-Scoring Passage algorithm
(MaxPsg) with the standard passage language model. We can observe the
following for the 48 relevant comparisons for Jelinek-Mercer smoothing (4
corpora × 4 homogeneity measures × 3 passage sizes)

• For the MAP evaluation metric, IMSP [M][basic] is superior to MaxPsg
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in about 90% of the cases

• For the p@5 evaluation metric, IMSP [M][basic] is superior (or equal)
to MaxPsg in about 59% of the cases

• For the p@10 evaluation metric, IMSP [M][basic] is superior to MaxPsg

in about 65% of the cases

For Dirichlet smoothing, the superiority of IMSP [M][basic] over MaxPsg

becomes even more evident

• For the MAP evaluation metric, IMSP [M][basic] is superior to MaxPsg

in about 94% of the cases

• For the p@5 evaluation metric, IMSP [M][basic] is superior (or equal)
to MaxPsg in about 94% of the cases

• For the p@10 evaluation metric, IMSP [M][basic] is superior to MaxPsg

in about 96% of the cases

Similarly to the results in Section 7.4, passages of size 50 result in near
optimal performance with respect to other passage sizes, and MSP [length]
and MSP [docPsg] are the best performing methods in most cases. When
passage size is set to 50, and Dirichlet smoothing (which outperforms Jelinek-
Mercer smoothing in most cases) is used, IMSP [length][basic] and IMSP [docPsg][basic],
are both superior to the standard document-based method (BaseDoc) in
50% and 67% of the relevant comparisons (4 corpora × 3 evaluation met-
rics), respectively; in many cases (e.g., LA+FR45, FR12), the differences
are also statistically significant.

We cannot attribute this superiority solely to cases wherein Interpolated
Max-Scoring Passage interpolates the score of Max-Scoring Passage with a
score derived from a superior algorithm — BaseDoc. Case in point, for
FR12, MaxPsg is clearly superior to BaseDoc, while for LA+FR45 the
reverse holds; however, it is almost always the case that for both corpora,
shadows that highlight the best performance with respect to an evalua-
tion metric and smoothing technique, appear in rows corresponding to the
IMSP [M][basic] algorithms. It is interesting to note that in some cases
even the performance for AP89, a corpus considered highly homogeneous,
benefits from interpolation with passage evidence (e.g., compare the results
for IMSP [docPsg][basic] and BaseDoc with Dirichlet smoothing on AP89).
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FR12
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

Jelinek-Mercer Smoothing

BaseDoc 22.00 19.05 13.33 22.00 19.05 13.33 22.00 19.05 13.33
MaxPsg 28.44 19.05 14.76 30.14d 19.05 14.76 18.10 13.33 13.81

IMSP[length][basic] 29.25 20.00 15.24 30.56 d 17.14 13.81 25.35 16.19 12.86

IMSP[ent][basic] 28.07p 19.05 15.24 29.96 17.14 14.29 19.61 16.19 13.33

IMSP[docPsg][basic] 29.01 19.05 15.24 30.08 17.14 13.81 22.53 15.24 12.86

IMSP[interPsg][basic] 28.82 18.10 14.76 29.99 17.14 14.29 22.54 15.24 12.86

Dirichlet Smoothing

BaseDoc 25.29 22.86 18.10 25.29 22.86 18.10 25.29 22.86 18.10

MaxPsg 29.17 17.14 14.76 30.67 22.86 17.14 19.23 17.14 14.29

IMSP[length][basic] 29.97 20.00 16.67 30.84 22.86 18.10 29.81p 22.86 18.10

IMSP[ent][basic] 29.19 20.95 16.67 30.47 21.90 18.57 28.99p 20.95 18.10

IMSP[docPsg][basic] 29.93 20.95 17.62 30.28 21.90 17.14 29.22p 20.95 17.14

IMSP[interPsg][basic] 29.83 17.14 17.62 30.33 21.90 16.67 28.95 20.95 16.67

LA+FR45
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

Jelinek-Mercer Smoothing

BaseDoc 22.69 30.64 26.38 22.69 30.64 26.38 22.69 30.64 26.38

MaxPsg 21.93 27.66 25.53 21.68 28.51 25.74 21.70 29.36 26.81

IMSP[length][basic] 22.63p 27.66 26.60 22.75 p 28.09 24.89 22.36 26.81 24.89

IMSP[ent][basic] 22.08 27.23 25.53 21.80 29.36 25.96 21.79 30.21 26.17

IMSP[docPsg][basic] 22.66 28.51 26.60 22.65 25.96 25.32 20.96 26.81 23.62p

IMSP[interPsg][basic] 22.42 28.51 26.17 21.87 27.23 24.89 20.80p 27.66 24.04p

Dirichlet Smoothing

BaseDoc 24.05 32.34 26.81 24.05 32.34 26.81 24.05 32.34 26.81
MaxPsg 22.50 30.21 26.60 22.25 30.64 26.60 21.96 28.51 26.81

IMSP[length][basic] 24.52p 33.19 26.81 24.89d
p 33.62 27.45 24.84d

p 34.47 d
p 27.02

IMSP[ent][basic] 23.53p 32.34 26.60 24.74p 32.34 27.23 24.35p 31.49 27.23

IMSP[docPsg][basic] 24.44d
p 33.62 27.66 24.76d

p 33.62 27.02 24.70p 31.91 26.81

IMSP[interPsg][basic] 24.61p 32.34 26.81 25.02 p 31.06 27.02 24.53p 30.21 27.02

Figure continues on the next page.
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WSJ
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

Jelinek-Mercer Smoothing

BaseDoc 28.38 42.40 39.60 28.38 42.40 39.60 28.38 42.40 39.60

MaxPsg 28.80 46.00 41.80 26.10d 44.00 40.40 24.95d 40.80 37.20

IMSP[length][basic] 29.25 p 46.00 42.00 27.43d
p 44.80 41.40 26.04d

p 40.80 37.60

IMSP[ent][basic] 29.16p 45.20 42.40 26.68d
p 43.60 40.40 25.30d

p 41.20 36.40

IMSP[docPsg][basic] 29.17d
p 45.20 41.60 27.70p 44.80 42.00p 25.83d

p 39.60 37.00

IMSP[interPsg][basic] 29.22p 46.00 42.20 27.30p 43.60 41.20 25.44d
p 40.00 35.60d

Dirichlet Smoothing

BaseDoc 32.50 53.60 48.40 32.50 53.60 48.40 32.50 53.60 48.40
MaxPsg 31.12d 49.20d 46.00 27.86d 44.80d 41.20d 26.02d 40.00d 37.00d

IMSP[length][basic] 32.58p 53.60p 48.00p 32.08p 54.80 p 48.00p 32.25p 54.40p 47.60p

IMSP[ent][basic] 32.13p 52.80p 48.20p 31.42p 52.80p 47.00p 31.33d
p 54.40p 47.60p

IMSP[docPsg][basic] 32.86 d
p 53.60p 48.20p 32.55p 54.80 p 47.80p 32.40p 54.40p 47.40p

IMSP[interPsg][basic] 32.72p 54.40p 48.40 p 31.86p 52.40p 47.60p 31.22d
p 52.40p 46.60p

AP89
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

Jelinek-Mercer Smoothing

BaseDoc 19.98 25.65 24.13 19.98 25.65 24.13 19.98 25.65 24.13

MaxPsg 18.82d 27.83 23.04 17.71d 26.09 22.39 16.34d 20.43 16.52d

IMSP[length][basic] 18.99p 28.26 23.04 18.38d
p 26.52 23.04 17.15d

p 21.30 19.57d
p

IMSP[ent][basic] 18.95d
p 27.39 23.26 18.00d

p 26.52 22.39 16.73d 20.43d 17.83d

IMSP[docPsg][basic] 19.43p 25.65 23.48 18.71d
p 27.39 22.61 17.25d

p 21.74 19.78d
p

IMSP[interPsg][basic] 19.04p 26.09 23.04 18.14d
p 25.22 22.61 16.75d

p 20.87 18.26d

Dirichlet Smoothing

BaseDoc 20.63 28.26 26.52 20.63 28.26 26.52 20.63 28.26 26.52

MaxPsg 19.99 25.65 24.35 18.67d 24.35 22.83 17.16d 21.74 18.04d

IMSP[length][basic] 20.37p 26.09 24.78 20.15p 26.96 25.00 20.20d
p 26.09 25.00d

p

IMSP[ent][basic] 20.22p 26.52 24.57 19.95p 28.26 25.65p 19.87d
p 26.52 26.09p

IMSP[docPsg][basic] 20.71 29.57 25.87 20.67p 28.70 26.09 20.58p 27.83 25.65p

IMSP[interPsg][basic] 20.56 28.70 25.00 20.31p 27.83 25.43 20.10d
p 23.04d 24.57p

Figure 7: Performance numbers of the Interpolated Max-Scoring Passage
algorithm (IMSP [M][basic]).
IMSP [M][basic] interpolates between the document-based language model

(BaseDoc) score with the score assigned by the Max-Scoring Passage algorithm
when implemented with the standard passage language model (MaxPsg), using
the homogeneity measure M. Either Jelinek-Mercer or Dirichlet smoothing is
used for the construction of the language models. Standard document-based
(BaseDoc) and standard passage-based (MaxPsg) language-model retrieval per-
formance is presented for reference. Boldface indicates the best result per col-
umn; shadow marks the best performance in a table with respect to an evalu-
ation measure; d and p mark statistically significant differences with BaseDoc

and MaxPsg respectively.
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Further analysis Analogously to Section 7.4, we now examine the alter-
native of fixing the balance between the document-based and passage-based
query-similarity scores, making the assumption that all documents in the
corpus are homogeneous to the same extent, by setting h[M](d) to a fixed
value for all d ∈ C. Note that doing so results in fixed interpolation weights,
which is reminiscent of Callan’s best performing retrieval model [7]. Fur-
thermore, observe that setting h[M](d) to 0 or 1 and using the Interpolated
Max-Scoring Passage algorithm amounts to using MaxPsg or BaseDoc re-
spectively. (Refer to Section 4.1).

Figure 8 depicts the MAP performance curve of Interpolated Max-Scoring
Passage (with passage sizes set to 150, 50 and 25) when setting h[M](d) to a
fixed value in {0, 0.1, . . . , 1.0}. We also plot for comparison the performance
of our best performing methods IMSP [docPsg][basic] and IMSP [length][basic],
with thick and thin horizontal line respectively.

We can see in Figure 8 that for larger passage sizes (passages of size
150 and 50) using the homogeneity measures helps us at the very least to
avoid a relatively poor performance obtained by a bad choice of a constant
h[M](d) (as is the case on AP89). In some cases (see FR12 or WSJ) using
homogeneity measures for passages of sizes 150 and 50 yields near (or even
better than) optimal performance with respect to that obtained by any fixed
weight in {0, 0.1, . . . , 1}. It is also important to note that while the perfor-
mance differences are small in absolute terms, many of them are statistically
significant.

• For passage size 150, IMSP [length][basic]’s performance is better to a
statistically significant degree than that resulting from setting h[M](d) =
0 for all tested corpora except FR12, h[M](d) ∈ {0.1, . . . , 0.4} for
LA+FR45, h[M](d) ∈ {0.1, 0.3} for WSJ and h[M](d) = 0.9 for FR12.
Performance of IMSP [docPsg][basic] is better to a statistically signifi-
cant degree than that resulting from setting h[M](d) = 0 for all corpora
and h[M](d) = 0 for WSJ, LA+FR45 and AP89.

• For passage size 50, IMSP [length][basic]’s performance is better to a
statistically significant degree than that resulting from setting h[M](d) =
0 for all tested corpora except FR12, h[M](d) = 0.1 for AP89 and
h[M](d) = 0.2 for WSJ. Performance of IMSP [docPsg][basic] is better
to a statistically significant degree than that resulting from setting
h[M](d) = 0 for all tested corpora except FR12, h[M](d) = 0.1 for
AP89, h[M](d) = 0.2 for WSJ and h[M](d) = 0.6 for LA+FR45.

Figure 8 also illustrates the performance degradation for passages of size
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25, which is in line with our findings in Section 7.4.
We therefore draw the conclusion — which is analogous to the one in

Section 7.4 — that the homogeneity measures help to integrate document-
based and passage-based similarity scores to result in performance that is
often superior to that resulting from using each separately, or resulting from
a poor choice of fixed interpolation coefficients in Equation 10 (page 15).
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Figure 8: The Interpolated Max-Scoring Passage algorithm’s MAP per-
formance when either setting h[M](d) to fixed values or using homogeneity
measures.
The performance is shown when either h[M](d) ∈ {0, 0.1, . . . , 1.0} for all d ∈
C (note that 0 and 1 correspond to MaxPsg and BaseDoc respectively), or
using the homogeneity measures length and docPsg (thin and thick horizontal
lines, respectively) instead, although these measures do not incorporate free
parameters. (Lines are used for convenience of comparison.) Note: figures
are not to the same scale.
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7.5.2 The IMSP [M][M] algorithm

Figure 9 depicts the performance results of the Interpolated Max-Scoring
Passage algorithms, denoted IMSP [M][M]. To smooth document language
models we use Jelinek-Mercer smoothing and set λC = 0.5 (as in Section 7.2).
As a passage language model we use our language model from Equation 11
(page 11), wherein we smooth the passage maximum-likelihood estimate
with those of its ambient document and the collection.

Thus, IMSP [M][M], balances the document and passage evidence on
two levels. The first level is the language model used for selecting the pas-
sage with the highest query-similarity score; the second level is the score
interpolation between document and passage scores that is performed after
the passage with the highest query-similarity score has been selected. On
both levels, we use the homogeneity measure to balance the document and
passage information.

Figure 9 compares the performance of IMSP [M][M] to that of our
reference comparisons BaseDoc and MaxPsg. We see in Figure 9 that
IMSP [M][M] is superior to both using the standard document language
model (BaseDoc) and the Max-Scoring Passage algorithm (MaxPsg) with
the standard passage language model.

We can observe the following for the 48 relevant comparisons for Jelinek-
Mercer smoothing(4 corpora × 4 homogeneity measures × 3 passage sizes)

• For the MAP evaluation metric, IMSP [M][basic] is superior to MaxPsg

in about 96% of the cases

• For the p@5 evaluation metric, IMSP [M][basic] is superior to MaxPsg

in about 65% of the cases

• For the p@10 evaluation metric, IMSP [M][basic] is superior to MaxPsg

in about 88% of the cases

Similarly to the results in sections 7.4.1 and 7.5.1 using passages of size
50 results in in near optimal performance with respect to other passage
sizes, and MSP [length] and MSP [docPsg] are the best performing methods
in most cases. When passage size is set to 50, IMSP [length][basic] and
IMSP [docPsg][basic] are both superior in 83% of the relevant comparisons (4
corpora × 3 evaluation metrics) to the standard document-based method,
BaseDoc; in some cases (e.g., WSJ and FR12), the differences are also
statistically significant.
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FR12
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.00 19.05 13.33 22.00 19.05 13.33 22.00 19.05 13.33

MaxPsg 28.44 19.05 14.76 30.14d 19.05 14.76 18.10 13.33 13.81

IMSP[length][length] 29.43d 20.95 16.19 32.74 d
p 20.95 16.67d 26.77p 20.95 p 15.24

IMSP[ent][ent] 29.12d 18.10 16.19 30.01d 18.10 17.14 d 24.33 19.05 15.71

IMSP[docPsg][docPsg] 28.20 18.10 16.19 31.06d 19.05 15.71 25.30 19.05 13.33

IMSP[interPsg][interPsg] 28.52 19.05 15.24 30.76d 18.10 15.71 25.37 18.10 12.38

LA+FR45
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.69 30.64 26.38 22.69 30.64 26.38 22.69 30.64 26.38
MaxPsg 21.93 27.66 25.53 21.68 28.51 25.74 21.71 29.36 26.81

IMSP[length][length] 23.16p 29.79 27.87 24.23 p 28.51 25.74 23.02 25.96 24.47

IMSP[ent][ent] 22.33 28.94 27.45p 21.80 28.94 25.74 21.73 29.79 25.74

IMSP[docPsg][docPsg] 22.99 29.79 26.81 23.22 27.23 25.11 20.84 25.53 23.40p

IMSP[interPsg][interPsg] 23.00p 29.36 27.02 21.93 26.38 25.74 20.75 28.51 23.19p

WSJ
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 28.38 42.40 39.60 28.38 42.40 39.60 28.38 42.40 39.60
MaxPsg 28.80 46.00 41.80 26.10d 44.00 40.40 24.95d 40.80 37.20

IMSP[length][length] 29.21d 44.80 41.80 29.05p 45.60 44.80 d
p 28.22p 43.60 43.20p

IMSP[ent][ent] 29.27 d 44.00 42.00 27.87p 44.40 42.40p 26.49d
p 41.60 39.60

IMSP[docPsg][docPsg] 29.19d 44.00 41.80d 29.07p 46.40 43.40d
p 27.72p 42.80 42.40p

IMSP[interPsg][interPsg] 29.09d 45.20 42.20d 28.08p 44.80 43.60d
p 26.70d

p 42.00 39.00

AP89
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 19.98 25.65 24.13 19.98 25.65 24.13 19.98 25.65 24.13

MaxPsg 18.82d 27.83 23.04 17.71d 26.09 22.39 16.34d 20.43 16.52d

IMSP[length][length] 19.36p 26.09 23.04 18.88p 26.96 24.78 17.86d
p 25.22p 21.74p

IMSP[ent][ent] 19.17p 27.39 22.61 18.23d
p 26.09 23.26 17.36d

p 20.87 19.13d
p

IMSP[docPsg][docPsg] 19.74p 26.09 23.48 19.41p 27.83 24.57 17.82d
p 25.65p 21.96p

IMSP[interPsg][interPsg] 19.52p 25.22 23.04 18.38d
p 25.22 23.04 17.21d

p 23.91p 19.13d
p

Figure 9: Performance numbers of the Interpolated Max-Scoring Passage
algorithm (IMSP [M][M]).
IMSP [M][M] interpolates the document-based language model (BaseDoc) score
with the score assigned by the Max-Scoring Passage algorithm when imple-
mented with our homogeneity-based passage language model (MSP [M]), using
the homogeneity measure M. Standard document-based (BaseDoc) and stan-
dard passage-based (MaxPsg) language-model retrieval performance is pre-
sented for reference. Boldface indicates the best result per column; shadow
marks the best performance in a table with respect to an evaluation measure;
d and p mark statistically significant differences with BaseDoc and MaxPsg

respectively.
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Further analysis We now present a comparison between several of the
algorithms proposed in this thesis.

We want to explore whether the Interpolated Max-Scoring Passage al-
gorithm, which assigns a score to a document by the interpolation of the
document query-similarity score and the highest query-similarity score of
any of its passages, may yield further performance improvements over us-

ing Max-Scoring Passage algorithm with our language model p
[M]
g (·), which

assigns a score to a document by the highest query-similarity score of any
of its passages. Accordingly, we compare in Figure 10 the performance of
the MSP [M] instantiation of the Max-Scoring Passage algorithm from Sec-
tion 7.4, the IMSP [M][basic] instantiation of the Interpolated Max-Scoring
Passage algorithm from Section 7.5.1 and the IMSP [M][M] instantiation
of the Interpolated Max-Scoring Passage algorithm discussed in the current
section.

The main conclusion we can draw from Figure 10 is that the differences
between IMSP [M][M], IMSP [M][basic] and MSP [M] performances are
rarely statistically significant. There is not a clear indication of superior-
ity of neither of the algorithms; however, generally IMSP [M][M] demon-
strates the best performance among the three: out of 33 shadow-marked
results (best performance per homogeneity measure) 17 are achieved by
IMSP [M][M], 4 are achieved by IMSP [M][basic] and 13 are achieved by
MSP [M]. However, as mentioned above, in most cases the differences are
not statistically significant.
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FR12
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

h[length](d)

MSP[length] 29.56 18.10 15.71 31.83 20.00 15.71 26.87 21.90 16.19

IMSP[length][basic] 29.25m 20.00 15.24 30.56m 17.14 13.81 25.35 16.19 12.86

IMSP[length][length] 29.43 20.95 16.19 32.74 m
i 20.95 16.67 26.77 20.95 15.24

h[docPsg](d)

MSP[docPsg] 29.32 19.05 16.19 31.01 19.05 15.71 25.32 18.10 12.86

IMSP[docPsg][basic] 29.01 19.05 15.24 30.08 17.14 13.81 22.53 15.24 12.86

IMSP[docPsg][docPsg] 28.20 18.10 16.19 31.06 19.05 15.71 25.30 19.05 13.33

LA+FR45
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

h[length](d)

MSP[length] 23.05 28.94 27.45 23.56 28.94 25.96 23.21 25.53 25.11

IMSP[length][basic] 22.63 27.66 26.60 22.75 28.09 24.89 22.36 26.81 24.89

IMSP[length][length] 23.16 29.79 27.87 24.23 28.51 25.74 23.02 25.96 24.47

h[docPsg](d)

MSP[docPsg] 23.16 29.36 27.87 22.99 26.38 25.53 21.75 26.38 24.26

IMSP[docPsg][basic] 22.66m 28.51 26.60 22.65 25.96 25.32 20.96 26.81 23.62

IMSP[docPsg][docPsg] 22.99 29.79 26.81 23.22 27.23 25.11 20.84 25.53 23.40

Figure continues on the next page.
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WSJ
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

h[length](d)

MSP[length] 29.25 44.40 43.00 29.00 46.00 44.80 27.91 44.00 43.40

IMSP[length][basic] 29.25 46.00 42.00 27.43m 44.80 41.40m 26.04m 40.80 37.60m

IMSP[length][length] 29.21 44.80 41.80m 29.05i 45.60 44.80 i 28.22i 43.60 43.20i

h[docPsg](d)

MSP[docPsg] 29.13 44.40 42.60 29.15 45.60 44.80 27.80 42.00 42.40

IMSP[docPsg][basic] 29.17 45.20 41.60 27.70m 44.80 42.00m 25.83m 39.60 37.00m

IMSP[docPsg][docPsg] 29.19 44.00 41.80 29.07i 46.40 43.40 27.72i 42.80 42.40i

AP89
PSG 150 PSG 50 PSG 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

h[length](d)

MSP[length] 19.32 27.83 23.70 18.74 26.09 24.57 17.79 24.78 20.87

IMSP[length][basic] 18.99m 28.26 23.04 18.38m 26.52 23.04 17.15m 21.30m 19.57

IMSP[length][length] 19.36 m
i 26.09 23.04 18.88m

i 26.96 24.78 17.86i 25.22i 21.74i

h[docPsg](d)

MSP[docPsg] 19.75 26.09 23.26 19.06 29.13 24.57 17.73 24.78 21.96

IMSP[docPsg][basic] 19.43 25.65 23.48 18.71m 27.39 22.61 17.25m 21.74m 19.78m

IMSP[docPsg][docPsg] 19.74 26.09 23.48 19.41m
i 27.83 24.57 17.82i 25.65 21.96

Figure 10: Comparison between the Max-Scoring Passage and Interpo-
lated Max-Scoring Passage algorithms.
Max-Scoring Passage (MSP [M]) algorithm is instantiated using our language

model p
[M]
g (·) and the Interpolated Max-Scoring Passage algorithm is instanti-

ated using either standard passage language model p
[basic]
g (·) (IMSP [M][basic]) or

our language model p
[M]
g (·) (IMSP [M][M]). Homogeneity measures h[length](d)

and h[docPsg](d) are used. Boldface indicates the best result per column; shadow
marks the best performance per homogeneity measure; m and i mark sta-
tistically significant performance differences with respect to MSP [M] and
IMSP [M][basic] respectively
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7.5.3 Conclusions

In this section we have instantiated two versions of Interpolated Max-Scoring
Passage algorithms, the first (IMSP [M][basic]) using the standard passage

language model p
[basic]
g (·), and the second (IMSP [M][M]) using our pas-

sage language model p
[M]
g (·). Both instantiations demonstrated (in many

cases significant) performance improvements over both document retrieval
(BaseDoc) and passage retrieval (MaxPsg) baselines. However, incorporat-

ing passage language model p
[M]
g (·) into the Interpolated Max-Scoring Pas-

sage instantiation IMSP [M][M] did not yield consistent performance im-
provements over those already achieved by instantiation of the Max-Scoring

Passage algorithm using passage language model p
[M]
g (·).
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7.6 The Representation-Based Scoring algorithm

The Representation-Based Scoring algorithm determines a score of the doc-
ument by the query-similarity score of its representation (see Equation 13,
page 21). Document representation is selected following the selection prin-
ciple detailed in Section 6.2; namely, we select a passage that bears the
closest similarity to the document as a whole, and use it as a basis for the
document representation. In our experiments, we determine the document-
passage similarity by means of calculating the cosine measure between the
tf.idf vector-space representations [36] of the passage and its ambient doc-
ument. The passage for which this cosine measure is maximized is selected
as the basis for the document representation.

The performance of the Representation-Based Scoring algorithm (Rep[M])
is shown in Figure 11. We can see that in the majority of the cases, perfor-
mance of Representation-Based Scoring algorithm is inferior to that of our
reference comparisons BaseDoc and MaxPsg.

One observation to be made is that for FR12 — collection considered
as highly heterogeneous [28] — the Representation-Based Scoring algorithm
performance is at its worst, showing considerable degradation with respect
to reference comparisons; on the other hand, for AP89, which considered to
be homogeneous, the Representation-Based Scoring algorithm performance
is much better, even outperforming the MaxPsg reference in some cases.
This can be attributed to the way the document representation is selected
in our experiments. Supposedly, the more heterogeneous the document is,
the less is the similarity between itself and its passage-based representation.
Thus, we can assume that for heterogeneous documents more elaborated
representations should be developed, as a single passage does not quite cap-
ture all the information contained in the document; on the other hand, for
the case of more homogeneous documents, a single passage can serve as a
basis for document representation reasonably well, because of its similarity
to a document as a whole.

The main conclusion we draw from experiments with the Representation-
Based Scoring algorithm is that the query-similarity consideration is vital
in the selection of the representative passage for a document. Performance
results from Section 7.4 and Section 7.5 in conjunction with the performance
results in the current section show that selection of a document represen-
tation according to a query (as in Max-Scoring Passage and Interpolated
Max-Scoring Passage algorithms, when selecting a passage with the high-
est query-similarity score as a basis for document representation) usually
leads to a better performance when compared with the selection of a query-
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independent document representation (as in the Representation-Based Scor-
ing algorithm).
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FR12
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.00 19.05 13.33 22.00 19.05 13.33 22.00 19.05 13.33

MaxPsg 28.44 19.05 14.76 30.14 d 19.05 14.76 18.10 13.33 13.81

Rep[length] 12.52d
p 15.24 11.90 11.10d

p 13.33 11.43 18.00 14.29 11.90

Rep[ent] 15.07p 14.29 11.43 12.62d
p 11.43 10.00p 20.21 14.29 10.95

Rep[docPsg] 14.50p 16.19 12.86 10.78d
p 12.38 11.43 17.80 14.29 10.95

Rep[interPsg] 12.11d
p 14.29 11.43 9.66d

p 11.43 9.52d
p 16.33d 12.38 10.95

LA+FR45
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.69 30.64 26.38 22.69 30.64 26.38 22.69 30.64 26.38

MaxPsg 21.93 27.66 25.53 21.68 28.51 25.74 21.71 29.36 26.81

Rep[length] 21.46d 29.36 25.11 21.82d 29.36 24.89 22.41 29.36 26.17
Rep[ent] 19.79d

p 26.38d 23.83 18.29d
p 28.94 24.04 21.62 28.09 23.62

Rep[docPsg] 21.89d 28.94 25.74 21.08d 28.09 24.68 20.82d 26.81 25.11

Rep[interPsg] 21.04d 28.09 25.11 19.57d 27.66 23.62 18.46d
p 25.53 23.40

WSJ
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 28.38 42.40 39.60 28.38 42.40 39.60 28.38 42.40 39.60

MaxPsg 28.80 46.00 41.80 26.10d 44.00 40.40 24.95d 40.80 37.20

Rep[length] 26.38d
p 39.60p 40.40 25.51d 40.80 38.00 25.70d 42.80 37.40

Rep[ent] 22.96d
p 40.40 40.00 19.56d

p 34.40d
p 32.60d

p 18.59d
p 35.20d 34.00d

Rep[docPsg] 27.11d
p 40.00p 41.60d 24.62d 40.00 37.40 22.64d 40.40 37.40

Rep[interPsg] 24.87d
p 38.00d

p 40.20 21.27d
p 36.00d

p 34.40d
p 18.57d

p 35.60d 34.40d

AP89
PsgSize 150 PsgSize 50 PsgSize 25

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 19.98 25.65 24.13 19.98 25.65 24.13 19.98 25.65 24.13

MaxPsg 18.82d 27.83 23.04 17.71d 26.09 22.39 16.34d 20.43 16.52d

Rep[length] 19.36d 23.04p 22.17 17.90d 23.48 22.83 17.00d
p 26.09 23.26p

Rep[ent] 17.10d
p 20.43d

p 20.65d 14.61d 23.04 20.00d 13.24d 24.78 22.83p

Rep[docPsg] 19.47 23.48 22.61 17.80d 24.35 22.17 15.98d 26.09 23.48p

Rep[interPsg] 19.04d 23.04p 22.39 16.11d 23.04 22.17 12.35d 24.78 22.17p

Figure 11: Performance numbers of the Representation-Based Scoring
algorithm (Rep[M]).
Algorithm is implemented using Equation 13 (page 21). Standard document-
based (BaseDoc) and standard passage-based (MaxPsg) language-model re-
trieval performance is presented for reference. Boldface indicates the best
result per column; shadow marks the best performance in a table with respect
to an evaluation measure; d and p mark statistically significant differences with
BaseDoc and MaxPsg respectively.
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7.7 Evaluation summary

In this section we summarize the experimental results presented in this chap-
ter, and draw conclusions about the performance of our algorithms’ instan-
tiations. To this end, we refer back to Figure 1, which presents the summary
of all algorithms instantiations used in our experiments. In order to compare
the different algorithms used, we choose to present performance results for
passages of size 50, which show near optimal performance with respect to
other passage sizes for both our methods and the reference comparisons. We
present results for the length homogeneity model. The performance results
for all collections for each of the methods in Figure 1 are presented in Figure
12 below.

It is clear from Figure 12 that some of the methods we propose (namely
MSP [M], IMSP [M][basic], IMSP [M][M] and RelPsg[M]) are superior
to their respective reference comparisons BaseDoc, MaxPsg, RelDoc and
RelPsg. In some of the cases, the differences are statistically significant.

An algorithm that consistently shows the best performance among all
our algorithms is RelPsg[M], which uses passage-based relevance models
(see Section 7.4.3 for more details). Among our language-model based algo-
rithms, IMSP [M][M], which integrates the MSP [M] and IMSP [M][basic]
algorithms (see Section 7.5.2), shows the best performance; it is better
than both reference comparisons BaseDoc, MaxPsg and the MSP [M] and
IMSP [M][basic] algorithms it integrates in 8 out of 12 cases.

As a summary to this chapter, we can draw a conclusion that an array
of experiments performed on several TREC corpora unequivocally demon-
strates the merits of using our homogeneity-based passage language models
for the ad hoc document retrieval task. We showed that document retrieval
performance can be (in some cases significantly) improved by using Max-
Scoring Passage and Interpolated Max-Scoring Passage algorithms, instan-
tiated using either our homogeneity-based language model (as in MSP [M],
IMSP [M][basic] and IMSP [M][M]) or our homogeneity-based relevance
model (as in RelPsg[M]).
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FR12 LA+FR45 WSJ AP89

MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10 MAP p@5 p@10

BaseDoc 22.00 19.05 13.33 22.69 30.64 26.38 28.38 42.40 39.60 19.98 25.65 24.13

MaxPsg 30.14d 19.05 14.76 21.68 28.51 25.74 26.10d 44.00 40.40 17.71d 26.09 22.39

MeanPsg 13.38d
p 7.62d

p 6.67d
p 16.26d

p 19.15d
p 18.09d

p 14.03d
p 21.20d

p 19.60d
p 14.27d

p 14.78d
p 13.48d

p

MSP[length] 31.83d
p 20.00 15.71 23.56p 28.94 25.96 29.00p 46.00 44.80d

p 18.74p 26.09 24.57

IMSP[length][basic] 30.56d 17.14 13.81 22.75p 28.09 24.89 27.43d
p 44.80 41.40 18.38d

p 26.52 23.04

IMSP[length][length] 32.74d
p 20.95 16.67d 24.23p 28.51 25.74 29.05p 45.60 44.80d

p 18.88p 26.96 24.78

Rep[length] 11.10d
p 13.33 11.43 21.82d 29.36 24.89 25.51d 40.80 38.00 17.90d 23.48 22.83

RelDoc 10.70 10.48 9.05 20.69 28.09 23.83 33.85 48.80 48.40 25.56 31.30 28.48

RelPsg 31.06d 19.05 16.19d 21.87 29.79 24.68 33.97 47.20 45.00 22.18 30.43 25.87

RelPsg[length] 30.74d 23.81d 18.10d 23.30d
p 33.19 25.32 37.53d

p 49.60 49.00p 24.30p 33.48 30.00p

Figure 12: Summary of the performance results of all the evaluated al-
gorithms.
Results for passage size 50 and homogeneity model length are presented for
each collection. Best result in a column is boldfaced; significant differences
with BaseDoc (or RelDoc in case of RelPsg[length]) and MaxPsg (or RelPsg in
case of RelPsg[length]) are marked with d and p respectively.
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8 Conclusions and Future Work

We have explored the potential benefits in utilizing passage-based infor-
mation for ad hoc document retrieval. To this end, we presented a general
probabilistic model for passage-based ad hoc document retrieval and showed
that several of the previously suggested passage-based document ranking ap-
proaches [28, 7, 45] can be derived from this probabilistic model.

Some previous work on utilization of passages in various information
retrieval tasks proposed an integration of information from a passage with
information from its ambient document as means to improve retrieval per-
formance [7, 6, 15, 32, 44]; fixed weights were used to control this integra-
tion. Instead, we presented measures for estimating document homogeneity
and used them for integrating passage information with that of its ambient
document. We showed that our homogeneity measures help to both fuse
document-based and passage-based ranking of documents, and to derive a
new passage language model; this new passage language model is effective for
passage-based document ranking and for constructing and utilizing passage-
based relevance models. In many cases, using our homogeneity measures
resulted in near (or even better than) optimal retrieval performance with
respect to that of the paradigm of fixing the document-passage information
integration weights.

We instantiated several retrieval methods based on our general proba-
bilistic framework, among which are: (i) an algorithm that ranks a docu-
ment by the highest query-similarity score of any of its passages, and (ii) an
algorithm that ranks a document by an interpolation of the document query-
similarity score and the highest query-similarity score of any of its passages.
We showed that implementation of these algorithms using our homogeneity-
based passage language model results in retrieval performance that is in
many cases superior to both document retrieval using standard document
language model and implementation of these algorithms using standard pas-
sage language model. In addition, we showed that using our homogeneity-
based passage language model can be used to construct passage-based rel-
evance models that are in many cases more effective than both document
relevance models [25] and standard passage relevance models [28]. In the
experiments we performed, our homogeneity-based passage language model
was shown to be effective both for heterogeneous and homogeneous corpora.

The performance attained by using our homogeneity-based language
model seems very promising and calls for further investigation and gener-
alization. Using relatively simple homogeneity measures, such as document
length, for integration of passage information with the information from its
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ambient document results in performance comparable to (or even acceding)
the best performance attained by using fixed weights for the integration.
This indicates that there might be even more potential for improvement
if homogeneity schemes more sophisticated than the ones proposed in this
thesis were applied. It is important to mention that the best retrieval per-
formance attained by using fixed weights for the integration of information
from a passage with information from its ambient document does not impose
an upper bound on the performance that could be attained using our homo-
geneity measures. In the latter case each document is assigned an individual
homogeneity measure value, while in the former case the same parameter
values are used across all documents in the collection, which is equivalent
to the assumption that all documents are homogeneous to the same extent.

Our experimental results demonstrate the effectiveness of using passage-
based information for ad hoc document retrieval. The retrieval performance
attained by a simple fixed-sized window passages used in our experiments
calls for further examination of our algorithms’ performance with more com-
plex passage types, such as arbitrary passages [19, 18] of varying lengths.
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